Skip to content

QualiChain/course_recommendation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Course-Recommender

Qualichain H2020 Course Recommendation Module

Docker Installation

In order to install Course recommender use Docker and docker-compose.

docker-compose up -d --build

You can access Course Recommender from port 5000

Local Installation

  1. Install Requirements: pip install -r requirements.txt
  2. go to /app/views/ folder using this command: cd /app/views
  3. and then execute this command: python -m flask run

Join Courses and Skills tables

Initially before running Course Recommendation module you should execute the following command in orded to have a merged table that contains Courses and Skills.

docker exec python join_tables_skill_courses.py

Recommendation API example usage

Recommendations combining ElasticSearch and clustering Functionalities

POST /recommend HTTP/1.1
Host: localhost:5000
Content-Type: application/json

{"source":{
   "PersonURI":"http://somewhere/JohnSmith",
   "Label":"CV1",
   "targetSector":"IT",
   "expectedSalary":"40K",
   "Description":"It is a test CV",
   "skills":[
      {
         "label":"Java",
         "proficiencyLevel":"basic",
         "SkillComment":"java programming language"
},
      {
         "label":"SQL",
         "proficiencyLevel":"basic",
         "SkillComment":"sql"
      	
      },
           {
         "label":"Python",
         "proficiencyLevel":"basic",
         "SkillComment":"python"
      	
      }
      
],
   "workHistory":[
      {
         "position":"developer",
         "from":"2019-01-01",
         "to":"2020-01-01",
         "employer":"QualiChain"
}


],
   "Education":[
      {
         "title":"informatic engineering",
         "from":"2015-09-01",
         "to":"2019-01-01",
         "organisation":"a",
         "description":"a"


}


]
},
"source_type": "cv",
"recommendation_type": "courses"}

Recommendations using ElasticSearch Functionalities

POST /recommend_elk HTTP/1.1
Host: localhost:5000
Content-Type: application/json

{"source":{
   "PersonURI":"http://somewhere/JohnSmith",
   "Label":"CV1",
   "targetSector":"IT",
   "expectedSalary":"40K",
   "Description":"It is a test CV",
   "skills":[
      {
         "label":"Java",
         "proficiencyLevel":"basic",
         "SkillComment":"java programming language"
},
      {
         "label":"SQL",
         "proficiencyLevel":"basic",
         "SkillComment":"sql"
      	
      },
           {
         "label":"Python",
         "proficiencyLevel":"basic",
         "SkillComment":"python"
      	
      }
      
],
   "workHistory":[
      {
         "position":"developer",
         "from":"2019-01-01",
         "to":"2020-01-01",
         "employer":"QualiChain"
}


],
   "Education":[
      {
         "title":"informatic engineering",
         "from":"2015-09-01",
         "to":"2019-01-01",
         "organisation":"a",
         "description":"a"


}


]
},
"source_type": "cv",
"recommendation_type": "courses"}

Recommendations using Clustering

POST /get_recommended_skills HTTP/1.1
Host: 127.0.0.1:5000
Content-Type: application/json

{
	"Skills":
	[{"SkillLabel":"Java"}, {"SkillLabel":"SQL"}]	
}
POST /get_recommended_courses HTTP/1.1
Host: 127.0.0.1:5000
Content-Type: application/json

{
	"Skills":
	[{"SkillLabel":"Java"}, {"SkillLabel":"SQL"}]	
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •