-
Notifications
You must be signed in to change notification settings - Fork 185
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
31 changed files
with
4,629 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
from .composite import scatter_log_softmax | ||
from .composite import scatter_logsumexp | ||
from .composite import scatter_softmax | ||
from .composite import scatter_std | ||
from .scatter import scatter | ||
from .scatter import scatter_add | ||
from .scatter import scatter_max | ||
from .scatter import scatter_mean | ||
from .scatter import scatter_min | ||
from .scatter import scatter_mul | ||
from .scatter import scatter_sum | ||
from .segment_coo import gather_coo | ||
from .segment_coo import segment_add_coo | ||
from .segment_coo import segment_coo | ||
from .segment_coo import segment_max_coo | ||
from .segment_coo import segment_mean_coo | ||
from .segment_coo import segment_min_coo | ||
from .segment_coo import segment_sum_coo | ||
from .segment_csr import gather_csr | ||
from .segment_csr import segment_add_csr | ||
from .segment_csr import segment_csr | ||
from .segment_csr import segment_max_csr | ||
from .segment_csr import segment_mean_csr | ||
from .segment_csr import segment_min_csr | ||
from .segment_csr import segment_sum_csr | ||
|
||
__all__ = [ | ||
"scatter_sum", | ||
"scatter_add", | ||
"scatter_mul", | ||
"scatter_mean", | ||
"scatter_min", | ||
"scatter_max", | ||
"scatter", | ||
"segment_sum_csr", | ||
"segment_add_csr", | ||
"segment_mean_csr", | ||
"segment_min_csr", | ||
"segment_max_csr", | ||
"segment_csr", | ||
"gather_csr", | ||
"segment_sum_coo", | ||
"segment_add_coo", | ||
"segment_mean_coo", | ||
"segment_min_coo", | ||
"segment_max_coo", | ||
"segment_coo", | ||
"gather_coo", | ||
"scatter_std", | ||
"scatter_logsumexp", | ||
"scatter_softmax", | ||
"scatter_log_softmax", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
from .logsumexp import scatter_logsumexp | ||
from .softmax import scatter_log_softmax | ||
from .softmax import scatter_softmax | ||
from .std import scatter_std | ||
|
||
__all__ = [ | ||
"scatter_std", | ||
"scatter_logsumexp", | ||
"scatter_softmax", | ||
"scatter_log_softmax", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
from typing import Optional | ||
|
||
import paddle | ||
from paddle_scatter import scatter_max | ||
from paddle_scatter import scatter_sum | ||
from paddle_scatter.utils import broadcast | ||
|
||
|
||
def scatter_logsumexp( | ||
src: paddle.Tensor, | ||
index: paddle.Tensor, | ||
dim: int = -1, | ||
out: Optional[paddle.Tensor] = None, | ||
dim_size: Optional[int] = None, | ||
eps: float = 1e-12, | ||
) -> paddle.Tensor: | ||
r"""Reduces all values from the `src` tensor into `out` at the | ||
indices specified in the `index` tensor along a given axis`dim`, | ||
the reduction method is logsumexp. (If dtype of `src` is int, output is still int.) | ||
Args: | ||
src (paddle.Tensor): The source tensor. | ||
index (paddle.Tensor): The indices of elements to scatter. The dimension | ||
of index should either be 1-D or :math:`i+1`-D. See Notes for more | ||
details. | ||
dim (int, optional): The axis along which to index. Default is -1. | ||
out (paddle.Tensor|None, optional): The destination tensor. Default is None. | ||
dim_size (int|None, optional): If `out` is not given, automatically create output | ||
with size `dim_size` at dimension `dim`. If `dim_size` is not given, | ||
a minimal sized output tensor according to `index.max() + 1` is returned. | ||
Default is None. | ||
eps (float, optional): Eplison factor added to the sum of exponent values during | ||
computation in case they are zero. Default is 1e-12. | ||
Returns: | ||
paddle.Tensor, the reduced tensor by logsumexp reduction method. | ||
""" | ||
if not paddle.is_floating_point(src): | ||
raise ValueError( | ||
"`scatter_logsumexp` can only be computed over " | ||
"tensors with floating point data types." | ||
) | ||
|
||
index = broadcast(index, src, dim) | ||
eps = paddle.to_tensor(eps, dtype=src.dtype) | ||
|
||
if out is not None: | ||
dim_size = out.shape[dim] | ||
else: | ||
if dim_size is None: | ||
dim_size = int(index.max()) + 1 | ||
|
||
size = src.shape | ||
size[dim] = dim_size | ||
max_value_per_index = paddle.full( | ||
size, | ||
fill_value=float("-inf"), | ||
dtype=src.dtype, | ||
) | ||
scatter_max(src, index, dim, max_value_per_index, dim_size=dim_size)[0] | ||
max_per_src_element = max_value_per_index.take_along_axis(indices=index, axis=dim) | ||
recentered_score = src - max_per_src_element | ||
recentered_score.masked_fill_(paddle.isnan(recentered_score), float("-inf")) | ||
|
||
orig_out: Optional[paddle.Tensor] = None | ||
if out is not None: | ||
orig_out = out.clone() | ||
res = out.subtract(max_value_per_index).exp() | ||
|
||
sum_per_index = scatter_sum(recentered_score.exp(), index, dim, res, dim_size) | ||
else: | ||
sum_per_index = scatter_sum(recentered_score.exp(), index, dim, None, dim_size) | ||
|
||
res = sum_per_index.add(eps).log().add(max_value_per_index) | ||
|
||
if orig_out is None: | ||
return res.nan_to_num_(neginf=0.0) | ||
|
||
mask = ~res.isfinite() | ||
res[mask] = orig_out[mask] | ||
paddle.assign(res, out) | ||
return out |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
from typing import Optional | ||
|
||
import paddle | ||
from paddle_scatter import scatter_max | ||
from paddle_scatter import scatter_sum | ||
from paddle_scatter.utils import broadcast | ||
|
||
|
||
def scatter_softmax( | ||
src: paddle.Tensor, | ||
index: paddle.Tensor, | ||
dim: int = -1, | ||
dim_size: Optional[int] = None, | ||
) -> paddle.Tensor: | ||
r"""Reduces all values from the `src` tensor into `out` at the | ||
indices specified in the `index` tensor along a given axis`dim`, | ||
the reduction method is softmax. (If dtype of `src` is int, output is still int.) | ||
Args: | ||
src (paddle.Tensor): The source tensor. | ||
index (paddle.Tensor): The indices of elements to scatter. The dimension | ||
of index should either be 1-D or :math:`i+1`-D. See Notes for more | ||
details. | ||
dim (int, optional): The axis along which to index. Default is -1. | ||
dim_size (int|None, optional): If `out` is not given, automatically create output | ||
with size `dim_size` at dimension `dim`. If `dim_size` is not given, | ||
a minimal sized output tensor according to `index.max() + 1` is returned. | ||
Default is None. | ||
Returns: | ||
paddle.Tensor, the reduced tensor by softmax reduction method. | ||
""" | ||
if not paddle.is_floating_point(src): | ||
raise ValueError( | ||
"`scatter_softmax` can only be computed over tensors " | ||
"with floating point data types." | ||
) | ||
|
||
index = broadcast(index, src, dim) | ||
|
||
max_value_per_index = scatter_max(src, index, dim=dim, dim_size=dim_size)[0] | ||
max_per_src_element = max_value_per_index.take_along_axis(indices=index, axis=dim) | ||
|
||
recentered_scores = src - max_per_src_element | ||
recentered_scores_exp = recentered_scores.exp() | ||
|
||
sum_per_index = scatter_sum(recentered_scores_exp, index, dim, dim_size=dim_size) | ||
normalizing_constants = sum_per_index.take_along_axis(indices=index, axis=dim) | ||
|
||
return recentered_scores_exp.divide(normalizing_constants) | ||
|
||
|
||
def scatter_log_softmax( | ||
src: paddle.Tensor, | ||
index: paddle.Tensor, | ||
dim: int = -1, | ||
eps: float = 1e-12, | ||
dim_size: Optional[int] = None, | ||
) -> paddle.Tensor: | ||
r"""Reduces all values from the `src` tensor into `out` at the | ||
indices specified in the `index` tensor along a given axis`dim`, | ||
the reduction method is log_softmax. (If dtype of `src` is int, output is still int.) | ||
Args: | ||
src (paddle.Tensor): The source tensor. | ||
index (paddle.Tensor): The indices of elements to scatter. The dimension | ||
of index should either be 1-D or :math:`i+1`-D. See Notes for more | ||
details. | ||
dim (int, optional): The axis along which to index. Default is -1. | ||
eps (float, optional): Eplison factor added to the normalizing constants during | ||
computation in case they are zero. Default is 1e-12. | ||
dim_size (int|None, optional): If `out` is not given, automatically create output | ||
with size `dim_size` at dimension `dim`. If `dim_size` is not given, | ||
a minimal sized output tensor according to `index.max() + 1` is returned. | ||
Default is None. | ||
Returns: | ||
paddle.Tensor, the reduced tensor by log_softmax reduction method. | ||
""" | ||
if not paddle.is_floating_point(src): | ||
raise ValueError( | ||
"`scatter_log_softmax` can only be computed over " | ||
"tensors with floating point data types." | ||
) | ||
|
||
index = broadcast(index, src, dim) | ||
eps = paddle.to_tensor(eps, dtype=src.dtype) | ||
|
||
max_value_per_index = scatter_max(src, index, dim=dim, dim_size=dim_size)[0] | ||
max_per_src_element = max_value_per_index.take_along_axis(indices=index, axis=dim) | ||
|
||
recentered_scores = src - max_per_src_element | ||
|
||
sum_per_index = scatter_sum(recentered_scores.exp(), index, dim, dim_size=dim_size) | ||
normalizing_constants = ( | ||
sum_per_index.add(eps).log().take_along_axis(indices=index, axis=dim) | ||
) | ||
|
||
return recentered_scores.subtract(normalizing_constants) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
from typing import Optional | ||
|
||
import paddle | ||
from paddle_scatter import scatter_sum | ||
from paddle_scatter.utils import broadcast | ||
|
||
|
||
def scatter_std( | ||
src: paddle.Tensor, | ||
index: paddle.Tensor, | ||
dim: int = -1, | ||
out: Optional[paddle.Tensor] = None, | ||
dim_size: Optional[int] = None, | ||
unbiased: bool = True, | ||
) -> paddle.Tensor: | ||
r"""Reduces all values from the `src` tensor into `out` at the | ||
indices specified in the `index` tensor along a given axis`dim`, | ||
the reduction method is std. (If dtype of `src` is int, output is still int.) | ||
Args: | ||
src (paddle.Tensor): The source tensor. | ||
index (paddle.Tensor): The indices of elements to scatter. The dimension | ||
of index should either be 1-D or :math:`i+1`-D. See Notes for more | ||
details. | ||
dim (int, optional): The axis along which to index. Default is -1. | ||
out (paddle.Tensor|None, optional): The destination tensor. Default is None. | ||
dim_size (int|None, optional): If `out` is not given, automatically create output | ||
with size `dim_size` at dimension `dim`. If `dim_size` is not given, | ||
a minimal sized output tensor according to `index.max() + 1` is returned. | ||
Default is None. | ||
unbiased (bool, optional): Indicate whether to calculate biased std (divide by n) | ||
or unbiased std (divide by n-1). Default is True. | ||
Returns: | ||
paddle.Tensor, the reduced tensor by std reduction method. | ||
""" | ||
if out is not None: | ||
dim_size = out.shape[dim] | ||
|
||
if dim < 0: | ||
dim = src.dim() + dim | ||
|
||
count_dim = dim | ||
if index.dim() <= dim: | ||
count_dim = index.dim() - 1 | ||
|
||
ones = paddle.ones(index.shape, dtype=src.dtype) | ||
count = scatter_sum(ones, index, count_dim, dim_size=dim_size) | ||
|
||
index = broadcast(index, src, dim) | ||
tmp = scatter_sum(src, index, dim, dim_size=dim_size) | ||
count = broadcast(count, tmp, dim).clip(1) | ||
mean = tmp.divide(count) | ||
|
||
var = src - mean.take_along_axis(indices=index, axis=dim) | ||
var = var * var | ||
res = scatter_sum(var, index, dim, out, dim_size) | ||
|
||
if unbiased: | ||
count = count.subtract(paddle.to_tensor(1, dtype=src.dtype)).clip(1) | ||
res = res.divide(count + 1e-6).sqrt() | ||
|
||
if out is not None: | ||
paddle.assign(res, out) | ||
return out | ||
else: | ||
return res |
Oops, something went wrong.