Skip to content

OGDAO332/deephaven-plugin-matplotlib

 
 

Repository files navigation

Deephaven Plugin for matplotlib

The Deephaven Plugin for matplotlib. Allows for opening matplotlib plots in a Deephaven environment. Any matplotlib plot should be viewable by default. For example:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.subplots()  # Create a figure containing a single axes.
ax.plot([1, 2, 3, 4], [4, 2, 6, 7])  # Plot some data on the axes.

You can also use TableAnimation, which allows updating a plot whenever a Deephaven Table is updated.

TableAnimation Usage

TableAnimation is a matplotlib Animation that is driven by updates in a Deephaven Table. Every time the table that is being listened to updates, the provided function will run again.

Line Plot

import matplotlib.pyplot as plt
from deephaven import time_table
from deephaven.plugin.matplotlib import TableAnimation

# Create a ticking table with the sin function
tt = time_table("00:00:01").update(["x=i", "y=Math.sin(x)"])

fig = plt.figure()      # Create a new figure
ax = fig.subplots()     # Add an axes to the figure
line, = ax.plot([],[])  # Plot a line. Start with empty data, will get updated with table updates.

# Define our update function. We only look at `data` here as the data is already stored in the format we want
def update_fig(data, update):
    line.set_data([data['x'], data['y']])
    
    # Resize and scale the axes. Our data may have expanded and we don't want it to appear off screen.
    ax.relim()
    ax.autoscale_view(True, True, True)

# Create our animation. It will listen for updates on `tt` and call `update_fig` whenever there is an update
ani = TableAnimation(fig, tt, update_fig)

Scatter Plot

Scatter plots require data in a different format that Line plots, so need to pass in the data differently.

import matplotlib.pyplot as plt
from deephaven import time_table
from deephaven.plugin.matplotlib import TableAnimation

tt = time_table("00:00:01").update(["x=Math.random()", "y=Math.random()", "z=Math.random()*50"])

fig = plt.figure()
ax = fig.subplots()
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
scat = ax.scatter([],[])    # Provide empty data initially
scatter_offsets = []        # Store separate arrays for offsets and sizes
scatter_sizes = []

def update_fig(data, update):
    # This assumes that table is always increasing. Otherwise need to look at other 
    # properties in update for creates and removed items
    added = update.added()
    for i in range(0, len(added['x'])):
        # Append new data to the sources
        scatter_offsets.append([added['x'][i], added['y'][i]])
        scatter_sizes.append(added['z'][i])

    # Update the figure
    scat.set_offsets(scatter_offsets)
    scat.set_sizes(scatter_sizes)

ani = TableAnimation(fig, tt, update_fig)

Multiple Series

It's possible to have multiple kinds of series in the same figure. Here is an example driving a line and a scatter plot:

import matplotlib.pyplot as plt
from deephaven import time_table
from deephaven.plugin.matplotlib import TableAnimation

tt = time_table("00:00:01").update(["x=i", "y=Math.sin(x)", "z=Math.cos(x)", "r=Math.random()", "s=Math.random()*100"])

fig = plt.figure()
ax = fig.subplots()
line1, = ax.plot([],[])
line2, = ax.plot([],[])
scat = ax.scatter([], [])
scatter_offsets = []
scatter_sizes = []

def update_fig(data, update):
    line1.set_data([data['x'], data['y']])
    line2.set_data([data['x'], data['z']])
    added = update.added()
    for i in range(0, len(added['x'])):
        scatter_offsets.append([added['x'][i], added['r'][i]])
        scatter_sizes.append(added['s'][i])
    scat.set_offsets(scatter_offsets)
    scat.set_sizes(scatter_sizes)
    ax.relim()
    ax.autoscale_view(True, True, True)

ani = TableAnimation(fig, tt, update_fig)

Build

To create your build / development environment:

python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip setuptools
pip install build deephaven-plugin matplotlib

To build:

python -m build --wheel

produces the wheel into dist/.

About

Deephaven Plugin for matplotlib

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%