This repository has been archived by the owner on Nov 11, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolact.py
735 lines (572 loc) · 31.2 KB
/
yolact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
import torch, torchvision
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models.resnet import Bottleneck
import numpy as np
from itertools import product
from math import sqrt
from typing import List
from collections import defaultdict
import pdb
from data.config import cfg, mask_type
from layers import Detect
from layers.interpolate import InterpolateModule
from backbone import construct_backbone
import torch.backends.cudnn as cudnn
from utils import timer
from utils.functions import MovingAverage, make_net
# This is required for Pytorch 1.0.1 on Windows to initialize Cuda on some driver versions.
# See the bug report here: https://github.com/pytorch/pytorch/issues/17108
torch.cuda.current_device()
# As of March 10, 2019, Pytorch DataParallel still doesn't support JIT Script Modules
use_jit = torch.cuda.device_count() <= 1
if not use_jit:
print('Multiple GPUs detected! Turning off JIT.')
ScriptModuleWrapper = torch.jit.ScriptModule if use_jit else nn.Module
script_method_wrapper = torch.jit.script_method if use_jit else lambda fn, _rcn=None: fn
class Concat(nn.Module):
def __init__(self, nets, extra_params):
super().__init__()
self.nets = nn.ModuleList(nets)
self.extra_params = extra_params
def forward(self, x):
# Concat each along the channel dimension
return torch.cat([net(x) for net in self.nets], dim=1, **self.extra_params)
prior_cache = defaultdict(lambda: None)
class PredictionModule(nn.Module):
"""
The (c) prediction module adapted from DSSD:
https://arxiv.org/pdf/1701.06659.pdf
Note that this is slightly different to the module in the paper
because the Bottleneck block actually has a 3x3 convolution in
the middle instead of a 1x1 convolution. Though, I really can't
be arsed to implement it myself, and, who knows, this might be
better.
Args:
- in_channels: The input feature size.
- out_channels: The output feature size (must be a multiple of 4).
- aspect_ratios: A list of lists of priorbox aspect ratios (one list per scale).
- scales: A list of priorbox scales relative to this layer's convsize.
For instance: If this layer has convouts of size 30x30 for
an image of size 600x600, the 'default' (scale
of 1) for this layer would produce bounding
boxes with an area of 20x20px. If the scale is
.5 on the other hand, this layer would consider
bounding boxes with area 10x10px, etc.
- parent: If parent is a PredictionModule, this module will use all the layers
from parent instead of from this module.
"""
def __init__(self, in_channels, out_channels=1024, aspect_ratios=[[1]], scales=[1], parent=None, index=0):
super().__init__()
self.num_classes = cfg.num_classes
self.mask_dim = cfg.mask_dim # Defined by Yolact
self.num_priors = sum(len(x)*len(scales) for x in aspect_ratios)
self.parent = [parent] # Don't include this in the state dict
self.index = index
self.num_heads = cfg.num_heads # Defined by Yolact
if cfg.mask_proto_split_prototypes_by_head and cfg.mask_type == mask_type.lincomb:
self.mask_dim = self.mask_dim // self.num_heads
if cfg.mask_proto_prototypes_as_features:
in_channels += self.mask_dim
if parent is None:
if cfg.extra_head_net is None:
out_channels = in_channels
else:
self.upfeature, out_channels = make_net(in_channels, cfg.extra_head_net)
if cfg.use_prediction_module:
self.block = Bottleneck(out_channels, out_channels // 4)
self.conv = nn.Conv2d(out_channels, out_channels, kernel_size=1, bias=True)
self.bn = nn.BatchNorm2d(out_channels)
self.bbox_layer = nn.Conv2d(out_channels, self.num_priors * 4, **cfg.head_layer_params)
self.conf_layer = nn.Conv2d(out_channels, self.num_priors * self.num_classes, **cfg.head_layer_params)
self.mask_layer = nn.Conv2d(out_channels, self.num_priors * self.mask_dim, **cfg.head_layer_params)
if cfg.use_mask_scoring:
self.score_layer = nn.Conv2d(out_channels, self.num_priors, **cfg.head_layer_params)
if cfg.use_instance_coeff:
self.inst_layer = nn.Conv2d(out_channels, self.num_priors * cfg.num_instance_coeffs, **cfg.head_layer_params)
# What is this ugly lambda doing in the middle of all this clean prediction module code?
def make_extra(num_layers):
if num_layers == 0:
return lambda x: x
else:
# Looks more complicated than it is. This just creates an array of num_layers alternating conv-relu
return nn.Sequential(*sum([[
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
] for _ in range(num_layers)], []))
self.bbox_extra, self.conf_extra, self.mask_extra = [make_extra(x) for x in cfg.extra_layers]
if cfg.mask_type == mask_type.lincomb and cfg.mask_proto_coeff_gate:
self.gate_layer = nn.Conv2d(out_channels, self.num_priors * self.mask_dim, kernel_size=3, padding=1)
self.aspect_ratios = aspect_ratios
self.scales = scales
self.priors = None
self.last_conv_size = None
self.last_img_size = None
def forward(self, x):
"""
Args:
- x: The convOut from a layer in the backbone network
Size: [batch_size, in_channels, conv_h, conv_w])
Returns a tuple (bbox_coords, class_confs, mask_output, prior_boxes) with sizes
- bbox_coords: [batch_size, conv_h*conv_w*num_priors, 4]
- class_confs: [batch_size, conv_h*conv_w*num_priors, num_classes]
- mask_output: [batch_size, conv_h*conv_w*num_priors, mask_dim]
- prior_boxes: [conv_h*conv_w*num_priors, 4]
"""
# In case we want to use another module's layers
src = self if self.parent[0] is None else self.parent[0]
conv_h = x.size(2)
conv_w = x.size(3)
if cfg.extra_head_net is not None:
x = src.upfeature(x)
if cfg.use_prediction_module:
# The two branches of PM design (c)
a = src.block(x)
b = src.conv(x)
b = src.bn(b)
b = F.relu(b)
# TODO: Possibly switch this out for a product
x = a + b
bbox_x = src.bbox_extra(x)
conf_x = src.conf_extra(x)
mask_x = src.mask_extra(x)
#pdb.set_trace()
bbox = src.bbox_layer(bbox_x).permute(0, 2, 3, 1).contiguous().view(x.size(0), -1, 4)
conf = src.conf_layer(conf_x).permute(0, 2, 3, 1).contiguous().view(x.size(0), -1, self.num_classes)
if cfg.eval_mask_branch:
mask = src.mask_layer(mask_x).permute(0, 2, 3, 1).contiguous().view(x.size(0), -1, self.mask_dim)
else:
mask = torch.zeros(x.size(0), bbox.size(1), self.mask_dim, device=bbox.device)
if cfg.use_mask_scoring:
score = src.score_layer(x).permute(0, 2, 3, 1).contiguous().view(x.size(0), -1, 1)
if cfg.use_instance_coeff:
inst = src.inst_layer(x).permute(0, 2, 3, 1).contiguous().view(x.size(0), -1, cfg.num_instance_coeffs)
# See box_utils.decode for an explanation of this
if cfg.use_yolo_regressors:
bbox[:, :, :2] = torch.sigmoid(bbox[:, :, :2]) - 0.5
bbox[:, :, 0] /= conv_w
bbox[:, :, 1] /= conv_h
if cfg.eval_mask_branch:
if cfg.mask_type == mask_type.direct:
mask = torch.sigmoid(mask)
elif cfg.mask_type == mask_type.lincomb:
mask = cfg.mask_proto_coeff_activation(mask)
if cfg.mask_proto_coeff_gate:
gate = src.gate_layer(x).permute(0, 2, 3, 1).contiguous().view(x.size(0), -1, self.mask_dim)
mask = mask * torch.sigmoid(gate)
if cfg.mask_proto_split_prototypes_by_head and cfg.mask_type == mask_type.lincomb:
mask = F.pad(mask, (self.index * self.mask_dim, (self.num_heads - self.index - 1) * self.mask_dim), mode='constant', value=0)
priors = self.make_priors(conv_h, conv_w, x.device)
preds = { 'loc': bbox, 'conf': conf, 'mask': mask, 'priors': priors }
if cfg.use_mask_scoring:
preds['score'] = score
if cfg.use_instance_coeff:
preds['inst'] = inst
return preds
def make_priors(self, conv_h, conv_w, device):
""" Note that priors are [x,y,width,height] where (x,y) is the center of the box. """
global prior_cache
size = (conv_h, conv_w)
with timer.env('makepriors'):
if self.last_img_size != (cfg._tmp_img_w, cfg._tmp_img_h):
prior_data = []
# Iteration order is important (it has to sync up with the convout)
for j, i in product(range(conv_h), range(conv_w)):
# +0.5 because priors are in center-size notation
x = (i + 0.5) / conv_w
y = (j + 0.5) / conv_h
for ars in self.aspect_ratios:
for scale in self.scales:
for ar in ars:
if not cfg.backbone.preapply_sqrt:
ar = sqrt(ar)
if cfg.backbone.use_pixel_scales:
w = scale * ar / cfg.max_size
h = scale / ar / cfg.max_size
else:
w = scale * ar / conv_w
h = scale / ar / conv_h
# This is for backward compatability with a bug where I made everything square by accident
if cfg.backbone.use_square_anchors:
h = w
prior_data += [x, y, w, h]
self.priors = torch.Tensor(prior_data, device=device).view(-1, 4).detach()
self.priors.requires_grad = False
self.last_img_size = (cfg._tmp_img_w, cfg._tmp_img_h)
self.last_conv_size = (conv_w, conv_h)
prior_cache[size] = None
elif self.priors.device != device:
# This whole weird situation is so that DataParalell doesn't copy the priors each iteration
if prior_cache[size] is None:
prior_cache[size] = {}
if device not in prior_cache[size]:
prior_cache[size][device] = self.priors.to(device)
self.priors = prior_cache[size][device]
return self.priors
class FPN(ScriptModuleWrapper):
"""
Implements a general version of the FPN introduced in
https://arxiv.org/pdf/1612.03144.pdf
Parameters (in cfg.fpn):
- num_features (int): The number of output features in the fpn layers.
- interpolation_mode (str): The mode to pass to F.interpolate.
- num_downsample (int): The number of downsampled layers to add onto the selected layers.
These extra layers are downsampled from the last selected layer.
Args:
- in_channels (list): For each conv layer you supply in the forward pass,
how many features will it have?
"""
__constants__ = ['interpolation_mode', 'num_downsample', 'use_conv_downsample', 'relu_pred_layers',
'lat_layers', 'pred_layers', 'downsample_layers', 'relu_downsample_layers']
def __init__(self, in_channels):
super().__init__()
self.lat_layers = nn.ModuleList([
nn.Conv2d(x, cfg.fpn.num_features, kernel_size=1)
for x in reversed(in_channels)
])
# This is here for backwards compatability
padding = 1 if cfg.fpn.pad else 0
self.pred_layers = nn.ModuleList([
nn.Conv2d(cfg.fpn.num_features, cfg.fpn.num_features, kernel_size=3, padding=padding)
for _ in in_channels
])
if cfg.fpn.use_conv_downsample:
self.downsample_layers = nn.ModuleList([
nn.Conv2d(cfg.fpn.num_features, cfg.fpn.num_features, kernel_size=3, padding=1, stride=2)
for _ in range(cfg.fpn.num_downsample)
])
self.interpolation_mode = cfg.fpn.interpolation_mode
self.num_downsample = cfg.fpn.num_downsample
self.use_conv_downsample = cfg.fpn.use_conv_downsample
self.relu_downsample_layers = cfg.fpn.relu_downsample_layers
self.relu_pred_layers = cfg.fpn.relu_pred_layers
@script_method_wrapper
def forward(self, convouts:List[torch.Tensor]):
"""
Args:
- convouts (list): A list of convouts for the corresponding layers in in_channels.
Returns:
- A list of FPN convouts in the same order as x with extra downsample layers if requested.
"""
out = []
x = torch.zeros(1, device=convouts[0].device)
for i in range(len(convouts)):
out.append(x)
# For backward compatability, the conv layers are stored in reverse but the input and output is
# given in the correct order. Thus, use j=-i-1 for the input and output and i for the conv layers.
j = len(convouts)
for lat_layer in self.lat_layers:
j -= 1
if j < len(convouts) - 1:
_, _, h, w = convouts[j].size()
x = F.interpolate(x, size=(h, w), mode=self.interpolation_mode, align_corners=False)
x = x + lat_layer(convouts[j])
out[j] = x
# This janky second loop is here because TorchScript.
j = len(convouts)
for pred_layer in self.pred_layers:
j -= 1
out[j] = pred_layer(out[j])
if self.relu_pred_layers:
F.relu(out[j], inplace=True)
cur_idx = len(out)
# In the original paper, this takes care of P6
if self.use_conv_downsample:
for downsample_layer in self.downsample_layers:
out.append(downsample_layer(out[-1]))
else:
for idx in range(self.num_downsample):
# Note: this is an untested alternative to out.append(out[-1][:, :, ::2, ::2]). Thanks TorchScript.
out.append(nn.functional.max_pool2d(out[-1], 1, stride=2))
if self.relu_downsample_layers:
for idx in range(len(out) - cur_idx):
out[idx] = F.relu(out[idx + cur_idx], inplace=False)
return out
class FastMaskIoUNet(ScriptModuleWrapper):
def __init__(self):
super().__init__()
input_channels = 1
last_layer = [(cfg.num_classes-1, 1, {})]
self.maskiou_net, _ = make_net(input_channels, cfg.maskiou_net + last_layer, include_last_relu=True)
def forward(self, x):
x = self.maskiou_net(x)
maskiou_p = F.max_pool2d(x, kernel_size=x.size()[2:]).squeeze(-1).squeeze(-1)
return maskiou_p
class Yolact(nn.Module):
"""
██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗
╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝
╚████╔╝ ██║ ██║██║ ███████║██║ ██║
╚██╔╝ ██║ ██║██║ ██╔══██║██║ ██║
██║ ╚██████╔╝███████╗██║ ██║╚██████╗ ██║
╚═╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚═════╝ ╚═╝
You can set the arguments by changing them in the backbone config object in config.py.
Parameters (in cfg.backbone):
- selected_layers: The indices of the conv layers to use for prediction.
- pred_scales: A list with len(selected_layers) containing tuples of scales (see PredictionModule)
- pred_aspect_ratios: A list of lists of aspect ratios with len(selected_layers) (see PredictionModule)
"""
#def __init__(self):
def __init__(self, only_last_layer=False):
super().__init__()
self.only_last_layer = only_last_layer
self.backbone = construct_backbone(cfg.backbone)
if cfg.freeze_bn:
self.freeze_bn()
# Compute mask_dim here and add it back to the config. Make sure Yolact's constructor is called early!
if cfg.mask_type == mask_type.direct:
cfg.mask_dim = cfg.mask_size**2
elif cfg.mask_type == mask_type.lincomb:
if cfg.mask_proto_use_grid:
self.grid = torch.Tensor(np.load(cfg.mask_proto_grid_file))
self.num_grids = self.grid.size(0)
else:
self.num_grids = 0
self.proto_src = cfg.mask_proto_src
if self.proto_src is None: in_channels = 3
elif cfg.fpn is not None: in_channels = cfg.fpn.num_features
else: in_channels = self.backbone.channels[self.proto_src]
in_channels += self.num_grids
# The include_last_relu=false here is because we might want to change it to another function
self.proto_net, cfg.mask_dim = make_net(in_channels, cfg.mask_proto_net, include_last_relu=False)
if cfg.mask_proto_bias:
cfg.mask_dim += 1
self.selected_layers = cfg.backbone.selected_layers
src_channels = self.backbone.channels
if cfg.use_maskiou:
self.maskiou_net = FastMaskIoUNet()
if cfg.fpn is not None:
# Some hacky rewiring to accomodate the FPN
self.fpn = FPN([src_channels[i] for i in self.selected_layers])
self.selected_layers = list(range(len(self.selected_layers) + cfg.fpn.num_downsample))
src_channels = [cfg.fpn.num_features] * len(self.selected_layers)
self.prediction_layers = nn.ModuleList()
cfg.num_heads = len(self.selected_layers)
for idx, layer_idx in enumerate(self.selected_layers):
# If we're sharing prediction module weights, have every module's parent be the first one
parent = None
if cfg.share_prediction_module and idx > 0:
parent = self.prediction_layers[0]
pred = PredictionModule(src_channels[layer_idx], src_channels[layer_idx],
aspect_ratios = cfg.backbone.pred_aspect_ratios[idx],
scales = cfg.backbone.pred_scales[idx],
parent = parent,
index = idx)
self.prediction_layers.append(pred)
# Extra parameters for the extra losses
if cfg.use_class_existence_loss:
# This comes from the smallest layer selected
# Also note that cfg.num_classes includes background
self.class_existence_fc = nn.Linear(src_channels[-1], cfg.num_classes - 1)
if cfg.use_semantic_segmentation_loss:
self.semantic_seg_conv = nn.Conv2d(src_channels[0], cfg.num_classes-1, kernel_size=1)
# For use in evaluation
self.detect = Detect(cfg.num_classes, bkg_label=0, top_k=cfg.nms_top_k,
conf_thresh=cfg.nms_conf_thresh, nms_thresh=cfg.nms_thresh)
def save_weights(self, path):
""" Saves the model's weights using compression because the file sizes were getting too big. """
torch.save(self.state_dict(), path)
def load_weights(self, path):
""" Loads weights from a compressed save file. """
state_dict = torch.load(path)
# For backward compatability, remove these (the new variable is called layers)
for key in list(state_dict.keys()):
if key.startswith('backbone.layer') and not key.startswith('backbone.layers'):
del state_dict[key]
# Also for backward compatibility with v1.0 weights, do this check
if key.startswith('fpn.downsample_layers.'):
if cfg.fpn is not None and int(key.split('.')[2]) >= cfg.fpn.num_downsample:
del state_dict[key]
#self.load_state_dict(state_dict)
try:
self.load_state_dict(state_dict)
except RuntimeError as e:
print('Ignoring "' + str(e) + '"')
def init_weights(self, backbone_path):
""" Initialize weights for training. """
# Initialize the backbone with the pretrained weights.
self.backbone.init_backbone(backbone_path)
conv_constants = getattr(nn.Conv2d(1, 1, 1), '__constants__')
# Quick lambda to test if one list contains the other
def all_in(x, y):
for _x in x:
if _x not in y:
return False
return True
# Initialize the rest of the conv layers with xavier
for name, module in self.named_modules():
# See issue #127 for why we need such a complicated condition if the module is a WeakScriptModuleProxy
# Broke in 1.3 (see issue #175), WeakScriptModuleProxy was turned into just ScriptModule.
# Broke in 1.4 (see issue #292), where RecursiveScriptModule is the new star of the show.
# Note that this might break with future pytorch updates, so let me know if it does
is_script_conv = False
if 'Script' in type(module).__name__:
# 1.4 workaround: now there's an original_name member so just use that
if hasattr(module, 'original_name'):
is_script_conv = 'Conv' in module.original_name
# 1.3 workaround: check if this has the same constants as a conv module
else:
is_script_conv = (
all_in(module.__dict__['_constants_set'], conv_constants)
and all_in(conv_constants, module.__dict__['_constants_set']))
is_conv_layer = isinstance(module, nn.Conv2d) or is_script_conv
if is_conv_layer and module not in self.backbone.backbone_modules:
nn.init.xavier_uniform_(module.weight.data)
if module.bias is not None:
if cfg.use_focal_loss and 'conf_layer' in name:
if not cfg.use_sigmoid_focal_loss:
# Initialize the last layer as in the focal loss paper.
# Because we use softmax and not sigmoid, I had to derive an alternate expression
# on a notecard. Define pi to be the probability of outputting a foreground detection.
# Then let z = sum(exp(x)) - exp(x_0). Finally let c be the number of foreground classes.
# Chugging through the math, this gives us
# x_0 = log(z * (1 - pi) / pi) where 0 is the background class
# x_i = log(z / c) for all i > 0
# For simplicity (and because we have a degree of freedom here), set z = 1. Then we have
# x_0 = log((1 - pi) / pi) note: don't split up the log for numerical stability
# x_i = -log(c) for all i > 0
module.bias.data[0] = np.log((1 - cfg.focal_loss_init_pi) / cfg.focal_loss_init_pi)
module.bias.data[1:] = -np.log(module.bias.size(0) - 1)
else:
module.bias.data[0] = -np.log(cfg.focal_loss_init_pi / (1 - cfg.focal_loss_init_pi))
module.bias.data[1:] = -np.log((1 - cfg.focal_loss_init_pi) / cfg.focal_loss_init_pi)
else:
module.bias.data.zero_()
def train(self, mode=True):
super().train(mode)
if cfg.freeze_bn:
self.freeze_bn()
def freeze_bn(self, enable=False):
""" Adapted from https://discuss.pytorch.org/t/how-to-train-with-frozen-batchnorm/12106/8 """
for module in self.modules():
if isinstance(module, nn.BatchNorm2d):
module.train() if enable else module.eval()
module.weight.requires_grad = enable
module.bias.requires_grad = enable
def forward(self, x):
""" The input should be of size [batch_size, 3, img_h, img_w] """
_, _, img_h, img_w = x.size()
cfg._tmp_img_h = img_h
cfg._tmp_img_w = img_w
with timer.env('backbone'):
outs = self.backbone(x)
if cfg.fpn is not None:
with timer.env('fpn'):
# Use backbone.selected_layers because we overwrote self.selected_layers
outs = [outs[i] for i in cfg.backbone.selected_layers]
outs = self.fpn(outs)
proto_out = None
if cfg.mask_type == mask_type.lincomb and cfg.eval_mask_branch:
with timer.env('proto'):
proto_x = x if self.proto_src is None else outs[self.proto_src]
if self.num_grids > 0:
grids = self.grid.repeat(proto_x.size(0), 1, 1, 1)
proto_x = torch.cat([proto_x, grids], dim=1)
proto_out = self.proto_net(proto_x)
proto_out = cfg.mask_proto_prototype_activation(proto_out)
if cfg.mask_proto_prototypes_as_features:
# Clone here because we don't want to permute this, though idk if contiguous makes this unnecessary
proto_downsampled = proto_out.clone()
if cfg.mask_proto_prototypes_as_features_no_grad:
proto_downsampled = proto_out.detach()
# Move the features last so the multiplication is easy
proto_out = proto_out.permute(0, 2, 3, 1).contiguous()
if cfg.mask_proto_bias:
bias_shape = [x for x in proto_out.size()]
bias_shape[-1] = 1
proto_out = torch.cat([proto_out, torch.ones(*bias_shape)], -1)
with timer.env('pred_heads'):
pred_outs = { 'loc': [], 'conf': [], 'mask': [], 'priors': [] }
if cfg.use_mask_scoring:
pred_outs['score'] = []
if cfg.use_instance_coeff:
pred_outs['inst'] = []
for idx, pred_layer in zip(self.selected_layers, self.prediction_layers):
pred_x = outs[idx]
if cfg.mask_type == mask_type.lincomb and cfg.mask_proto_prototypes_as_features:
# Scale the prototypes down to the current prediction layer's size and add it as inputs
proto_downsampled = F.interpolate(proto_downsampled, size=outs[idx].size()[2:], mode='bilinear', align_corners=False)
pred_x = torch.cat([pred_x, proto_downsampled], dim=1)
# A hack for the way dataparallel works
if cfg.share_prediction_module and pred_layer is not self.prediction_layers[0]:
pred_layer.parent = [self.prediction_layers[0]]
#p = pred_layer(pred_x)
if self.only_last_layer:
p = pred_layer(pred_x.detach())
else:
p = pred_layer(pred_x)
for k, v in p.items():
pred_outs[k].append(v)
for k, v in pred_outs.items():
pred_outs[k] = torch.cat(v, -2)
if proto_out is not None:
pred_outs['proto'] = proto_out
pred_outs['feats'] = outs
if self.training:
# For the extra loss functions
if cfg.use_class_existence_loss:
pred_outs['classes'] = self.class_existence_fc(outs[-1].mean(dim=(2, 3)))
if cfg.use_semantic_segmentation_loss:
pred_outs['segm'] = self.semantic_seg_conv(outs[0])
return pred_outs
else:
if cfg.use_mask_scoring:
pred_outs['score'] = torch.sigmoid(pred_outs['score'])
if cfg.use_focal_loss:
if cfg.use_sigmoid_focal_loss:
# Note: even though conf[0] exists, this mode doesn't train it so don't use it
pred_outs['conf'] = torch.sigmoid(pred_outs['conf'])
if cfg.use_mask_scoring:
pred_outs['conf'] *= pred_outs['score']
elif cfg.use_objectness_score:
# See focal_loss_sigmoid in multibox_loss.py for details
objectness = torch.sigmoid(pred_outs['conf'][:, :, 0])
pred_outs['conf'][:, :, 1:] = objectness[:, :, None] * F.softmax(pred_outs['conf'][:, :, 1:], -1)
pred_outs['conf'][:, :, 0 ] = 1 - objectness
else:
pred_outs['conf'] = F.softmax(pred_outs['conf'], -1)
else:
if cfg.use_objectness_score:
objectness = torch.sigmoid(pred_outs['conf'][:, :, 0])
pred_outs['conf'][:, :, 1:] = (objectness > 0.10)[..., None] \
* F.softmax(pred_outs['conf'][:, :, 1:], dim=-1)
else:
pred_outs['conf'] = F.softmax(pred_outs['conf'], -1)
return self.detect(pred_outs, self)
# Some testing code
if __name__ == '__main__':
from utils.functions import init_console
init_console()
# Use the first argument to set the config if you want
import sys
if len(sys.argv) > 1:
from data.config import set_cfg
set_cfg(sys.argv[1])
net = Yolact()
net.train()
net.init_weights(backbone_path='weights/' + cfg.backbone.path)
# GPU
net = net.cuda()
torch.set_default_tensor_type('torch.cuda.FloatTensor')
x = torch.zeros((1, 3, cfg.max_size, cfg.max_size))
y = net(x)
for p in net.prediction_layers:
print(p.last_conv_size)
print()
for k, a in y.items():
print(k + ': ', a.size(), torch.sum(a))
exit()
net(x)
# timer.disable('pass2')
avg = MovingAverage()
try:
while True:
timer.reset()
with timer.env('everything else'):
net(x)
avg.add(timer.total_time())
print('\033[2J') # Moves console cursor to 0,0
timer.print_stats()
print('Avg fps: %.2f\tAvg ms: %.2f ' % (1/avg.get_avg(), avg.get_avg()*1000))
except KeyboardInterrupt:
pass