forked from koide3/small_gicp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkitti_odometry.py
executable file
·98 lines (74 loc) · 3.47 KB
/
kitti_odometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#!/usr/bin/python3
import os
import time
import argparse
import collections
import numpy
import small_gicp
from pyridescence import *
# Odometry estimation based on scan-to-scan matching
class ScanToScanMatchingOdometry(object):
def __init__(self, num_threads):
self.num_threads = num_threads
self.T_last_current = numpy.identity(4)
self.T_world_lidar = numpy.identity(4)
self.target = None
def estimate(self, raw_points):
downsampled, tree = small_gicp.preprocess_points(raw_points, 0.25, num_threads=self.num_threads)
if self.target is None:
self.target = (downsampled, tree)
return self.T_world_lidar
result = small_gicp.align(self.target[0], downsampled, self.target[1], self.T_last_current, num_threads=self.num_threads)
self.T_last_current = result.T_target_source
self.T_world_lidar = self.T_world_lidar @ result.T_target_source
self.target = (downsampled, tree)
return self.T_world_lidar
# Odometry estimation based on scan-to-model matching
class ScanToModelMatchingOdometry(object):
def __init__(self, num_threads):
self.num_threads = num_threads
self.T_last_current = numpy.identity(4)
self.T_world_lidar = numpy.identity(4)
self.target = small_gicp.GaussianVoxelMap(1.0)
self.target.set_lru(horizon=100, clear_cycle=10)
def estimate(self, raw_points):
downsampled, tree = small_gicp.preprocess_points(raw_points, 0.25, num_threads=self.num_threads)
if self.target.size() == 0:
self.target.insert(downsampled)
return self.T_world_lidar
result = small_gicp.align(self.target, downsampled, self.T_world_lidar @ self.T_last_current, num_threads=self.num_threads)
self.T_last_current = numpy.linalg.inv(self.T_world_lidar) @ result.T_target_source
self.T_world_lidar = result.T_target_source
self.target.insert(downsampled, self.T_world_lidar)
guik.viewer().update_drawable('target', glk.create_pointcloud_buffer(self.target.voxel_points()[:, :3]), guik.Rainbow())
return self.T_world_lidar
def main():
parser = argparse.ArgumentParser()
parser.add_argument('dataset_path', help='/path/to/kitti/velodyne')
parser.add_argument('--num_threads', help='Number of threads', type=int, default=4)
parser.add_argument('-m', '--model', help='Use scan-to-model matching odometry', action='store_true')
args = parser.parse_args()
dataset_path = args.dataset_path
filenames = sorted([dataset_path + '/' + x for x in os.listdir(dataset_path) if x.endswith('.bin')])
if not args.model:
odom = ScanToScanMatchingOdometry(args.num_threads)
else:
odom = ScanToModelMatchingOdometry(args.num_threads)
viewer = guik.viewer()
viewer.disable_vsync()
time_queue = collections.deque(maxlen=500)
for i, filename in enumerate(filenames):
raw_points = numpy.fromfile(filename, dtype=numpy.float32).reshape(-1, 4)[:, :3]
t1 = time.time()
T = odom.estimate(raw_points)
t2 = time.time()
time_queue.append(t2 - t1)
viewer.lookat(T[:3, 3])
viewer.update_drawable('points', glk.create_pointcloud_buffer(raw_points), guik.FlatOrange(T).add('point_scale', 2.0))
if i % 10 == 0:
viewer.update_drawable('pos_{}'.format(i), glk.primitives.coordinate_system(), guik.VertexColor(T))
viewer.append_text('avg={:.3f} msec/scan last={:.3f} msec/scan'.format(1000 * numpy.mean(time_queue), 1000 * time_queue[-1]))
if not viewer.spin_once():
break
if __name__ == '__main__':
main()