forked from koide3/small_gicp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_registration_template.cpp
336 lines (285 loc) · 16 KB
/
03_registration_template.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
// SPDX-FileCopyrightText: Copyright 2024 Kenji Koide
// SPDX-License-Identifier: MIT
/// @brief Basic point cloud registration example with small_gicp::align()
#include <queue>
#include <iostream>
#include <small_gicp/benchmark/read_points.hpp>
#include <small_gicp/ann/kdtree_omp.hpp>
#include <small_gicp/points/point_cloud.hpp>
#include <small_gicp/factors/gicp_factor.hpp>
#include <small_gicp/factors/plane_icp_factor.hpp>
#include <small_gicp/util/downsampling_omp.hpp>
#include <small_gicp/util/normal_estimation_omp.hpp>
#include <small_gicp/registration/reduction_omp.hpp>
#include <small_gicp/registration/registration.hpp>
using namespace small_gicp;
/// @brief Basic registration example using small_gicp::Registration.
void example1(const std::vector<Eigen::Vector4f>& target_points, const std::vector<Eigen::Vector4f>& source_points) {
int num_threads = 4; // Number of threads to be used
double downsampling_resolution = 0.25; // Downsampling resolution
int num_neighbors = 10; // Number of neighbor points used for normal and covariance estimation
double max_correspondence_distance = 1.0; // Maximum correspondence distance between points (e.g., triming threshold)
// Convert to small_gicp::PointCloud
auto target = std::make_shared<PointCloud>(target_points);
auto source = std::make_shared<PointCloud>(source_points);
// Downsampling
target = voxelgrid_sampling_omp(*target, downsampling_resolution, num_threads);
source = voxelgrid_sampling_omp(*source, downsampling_resolution, num_threads);
// Create KdTree
auto target_tree = std::make_shared<KdTree<PointCloud>>(target, KdTreeBuilderOMP(num_threads));
auto source_tree = std::make_shared<KdTree<PointCloud>>(source, KdTreeBuilderOMP(num_threads));
// Estimate point covariances
estimate_covariances_omp(*target, *target_tree, num_neighbors, num_threads);
estimate_covariances_omp(*source, *source_tree, num_neighbors, num_threads);
// GICP + OMP-based parallel reduction
Registration<GICPFactor, ParallelReductionOMP> registration;
registration.reduction.num_threads = num_threads;
registration.rejector.max_dist_sq = max_correspondence_distance * max_correspondence_distance;
// Align point clouds
Eigen::Isometry3d init_T_target_source = Eigen::Isometry3d::Identity();
auto result = registration.align(*target, *source, *target_tree, init_T_target_source);
std::cout << "--- T_target_source ---" << std::endl << result.T_target_source.matrix() << std::endl;
std::cout << "converged:" << result.converged << std::endl;
std::cout << "error:" << result.error << std::endl;
std::cout << "iterations:" << result.iterations << std::endl;
std::cout << "num_inliers:" << result.num_inliers << std::endl;
std::cout << "--- H ---" << std::endl << result.H << std::endl;
std::cout << "--- b ---" << std::endl << result.b.transpose() << std::endl;
}
/** Custom registration example **/
/// @brief Point structure with mean, normal, and features.
struct MyPoint {
std::array<double, 3> point; // Point coorindates
std::array<double, 3> normal; // Point normal
std::array<double, 36> features; // Point features
};
/// @brief My point cloud class.
using MyPointCloud = std::vector<MyPoint>;
// Define traits for MyPointCloud so that it can be fed to small_gicp algorithms.
namespace small_gicp {
namespace traits {
template <>
struct Traits<MyPointCloud> {
// *** Getters ***
// The following getters are required for feeding this class to registration algorithms.
// Number of points in the point cloud.
static size_t size(const MyPointCloud& points) { return points.size(); }
// Check if the point cloud has points.
static bool has_points(const MyPointCloud& points) { return !points.empty(); }
// Check if the point cloud has normals.
static bool has_normals(const MyPointCloud& points) { return !points.empty(); }
// Get i-th point. The last element should be 1.0.
static Eigen::Vector4d point(const MyPointCloud& points, size_t i) {
const auto& p = points[i].point;
return Eigen::Vector4d(p[0], p[1], p[2], 1.0);
}
// Get i-th normal. The last element should be 0.0.
static Eigen::Vector4d normal(const MyPointCloud& points, size_t i) {
const auto& n = points[i].normal;
return Eigen::Vector4d(n[0], n[1], n[2], 0.0);
}
// To use GICP, the following covariance getters are required additionally.
// static bool has_covs(const MyPointCloud& points) { return !points.empty(); }
// static const Eigen::Matrix4d cov(const MyPointCloud& points, size_t i);
// *** Setters ***
// The following methods are required for feeding this class to preprocessing algorithms.
// (e.g., downsampling and normal estimation)
// Resize the point cloud. This must retain the values of existing points.
static void resize(MyPointCloud& points, size_t n) { points.resize(n); }
// Set i-th point. pt = [x, y, z, 1.0].
static void set_point(MyPointCloud& points, size_t i, const Eigen::Vector4d& pt) { Eigen::Map<Eigen::Vector3d>(points[i].point.data()) = pt.head<3>(); }
// Set i-th normal. n = [nx, ny, nz, 0.0].
static void set_normal(MyPointCloud& points, size_t i, const Eigen::Vector4d& n) { Eigen::Map<Eigen::Vector3d>(points[i].normal.data()) = n.head<3>(); }
// To feed this class to estimate_covariances(), the following setter is required additionally.
// static void set_cov(MyPointCloud& points, size_t i, const Eigen::Matrix4d& cov);
};
} // namespace traits
} // namespace small_gicp
/// @brief Custom nearest neighbor search with brute force search. (Do not use this in practical applications)
struct MyNearestNeighborSearch {
public:
MyNearestNeighborSearch(const std::shared_ptr<MyPointCloud>& points) : points(points) {}
size_t knn_search(const Eigen::Vector4d& pt, int k, size_t* k_indices, double* k_sq_dists) const {
// Priority queue to hold top-k neighbors
const auto comp = [](const std::pair<size_t, double>& lhs, const std::pair<size_t, double>& rhs) { return lhs.second < rhs.second; };
std::priority_queue<std::pair<size_t, double>, std::vector<std::pair<size_t, double>>, decltype(comp)> queue(comp);
// Push pairs of (index, squared distance) to the queue
for (size_t i = 0; i < points->size(); i++) {
const double sq_dist = (Eigen::Map<const Eigen::Vector3d>(points->at(i).point.data()) - pt.head<3>()).squaredNorm();
queue.push({i, sq_dist});
if (queue.size() > k) {
queue.pop();
}
}
// Pop results
const size_t n = queue.size();
while (!queue.empty()) {
k_indices[queue.size() - 1] = queue.top().first;
k_sq_dists[queue.size() - 1] = queue.top().second;
queue.pop();
}
return n;
}
std::shared_ptr<MyPointCloud> points;
};
// Define traits for MyNearestNeighborSearch so that it can be fed to small_gicp algorithms.
namespace small_gicp {
namespace traits {
template <>
struct Traits<MyNearestNeighborSearch> {
/// @brief Find k-nearest neighbors.
/// @note This generic knn search is used for preprocessing (e.g., normal estimation).
/// @param search Nearest neighbor search
/// @param point Query point [x, y, z, 1.0]
/// @param k Number of neighbors
/// @param k_indices [out] Indices of the k-nearest neighbors
/// @param k_sq_dists [out] Squared distances of the k-nearest neighbors
/// @return Number of neighbors found
static size_t knn_search(const MyNearestNeighborSearch& search, const Eigen::Vector4d& point, size_t k, size_t* k_indices, double* k_sq_dists) {
return search.knn_search(point, k, k_indices, k_sq_dists);
}
/// @brief Find the nearest neighbor. This is a special case of knn_search with k=1 and is used in point cloud registration.
/// You can define this to optimize the search speed for k=1. Otherwise, nearest_neighbor_search() automatically falls back to knn_search() with k=1.
/// It is also valid to define only nearest_neighbor_search() and do not define knn_search() if you only feed your class to registration but not to preprocessing.
/// @param search Nearest neighbor search
/// @param point Query point [x, y, z, 1.0]
/// @param k_indices [out] Indices of the k-nearest neighbors
/// @param k_sq_dists [out] Squared distances of the k-nearest neighbors
/// @return 1 if the nearest neighbor is found, 0 otherwise
// static size_t nearest_neighbor_search(const MyNearestNeighborSearch& search, const Eigen::Vector4d& point, size_t* k_index, double* k_sq_dist);
};
} // namespace traits
} // namespace small_gicp
/// @brief Custom correspondence rejector.
struct MyCorrespondenceRejector {
MyCorrespondenceRejector() : max_correpondence_dist_sq(1.0), min_feature_cos_dist(0.9) {}
/// @brief Check if the correspondence should be rejected.
/// @param T Current estimate of T_target_source
/// @param target_index Target point index
/// @param source_index Source point index
/// @param sq_dist Squared distance between the points
/// @return True if the correspondence should be rejected
bool operator()(const MyPointCloud& target, const MyPointCloud& source, const Eigen::Isometry3d& T, size_t target_index, size_t source_index, double sq_dist) const {
// Reject correspondences with large distances
if (sq_dist > max_correpondence_dist_sq) {
return true;
}
// You can define your own rejection criteria here (e.g., based on features)
Eigen::Map<const Eigen::Matrix<double, 36, 1>> target_features(target[target_index].features.data());
Eigen::Map<const Eigen::Matrix<double, 36, 1>> source_features(target[target_index].features.data());
if (target_features.dot(source_features) < min_feature_cos_dist) {
return true;
}
return false;
}
double max_correpondence_dist_sq; // Maximum correspondence distance
double min_feature_cos_dist; // Maximum feature distance
};
/// @brief Custom general factor that can control the registration process.
struct MyGeneralFactor {
MyGeneralFactor() : lambda(1e8) {}
/// @brief Update linearized system.
/// @note This method is called just before the linearized system is solved.
/// By modifying the linearized system (H, b, e), you can inject arbitrary constraints.
/// @param target Target point cloud
/// @param source Source point cloud
/// @param target_tree Nearest neighbor search for the target point cloud
/// @param T Linearization point
/// @param H [in/out] Linearized information matrix.
/// @param b [in/out] Linearized information vector.
/// @param e [in/out] Error at the linearization point.
template <typename TargetPointCloud, typename SourcePointCloud, typename TargetTree>
void update_linearized_system(
const TargetPointCloud& target,
const SourcePointCloud& source,
const TargetTree& target_tree,
const Eigen::Isometry3d& T,
Eigen::Matrix<double, 6, 6>* H,
Eigen::Matrix<double, 6, 1>* b,
double* e) const {
// Optimization DoF mask [rx, ry, rz, tx, ty, tz] (1.0 = inactive, 0.0 = active)
Eigen::Matrix<double, 6, 1> dof_mask;
dof_mask << 1.0, 1.0, 0.0, 0.0, 0.0, 0.0;
// Fix roll and pitch rotation by adding a large penalty (soft contraint)
(*H) += dof_mask.asDiagonal() * lambda;
}
/// @brief Update error consisting of per-point factors.
/// @note This method is called just after the linearized system is solved in LM to check if the objective function is decreased.
/// If you modified the error in update_linearized_system(), you need to update the error here for consistency.
/// @param target Target point cloud
/// @param source Source point cloud
/// @param T Evaluation point
/// @param e [in/out] Error at the evaluation point.
template <typename TargetPointCloud, typename SourcePointCloud>
void update_error(const TargetPointCloud& target, const SourcePointCloud& source, const Eigen::Isometry3d& T, double* e) const {
// No update is required for the error.
}
double lambda; ///< Regularization parameter (Increasing this makes the constraint stronger)
};
/// @brief Example to perform preprocessing and registration separately.
void example2(const std::vector<Eigen::Vector4f>& target_points, const std::vector<Eigen::Vector4f>& source_points) {
int num_threads = 4; // Number of threads to be used
double downsampling_resolution = 0.25; // Downsampling resolution
int num_neighbors = 10; // Number of neighbor points used for normal and covariance estimation
double max_correspondence_distance = 1.0; // Maximum correspondence distance between points (e.g., triming threshold)
// Convert to MyPointCloud
std::shared_ptr<MyPointCloud> target = std::make_shared<MyPointCloud>();
target->resize(target_points.size());
for (size_t i = 0; i < target_points.size(); i++) {
Eigen::Map<Eigen::Vector3d>(target->at(i).point.data()) = target_points[i].head<3>().cast<double>();
}
std::shared_ptr<MyPointCloud> source = std::make_shared<MyPointCloud>();
source->resize(source_points.size());
for (size_t i = 0; i < source_points.size(); i++) {
Eigen::Map<Eigen::Vector3d>(source->at(i).point.data()) = source_points[i].head<3>().cast<double>();
}
// Downsampling works directly on MyPointCloud
target = voxelgrid_sampling_omp(*target, downsampling_resolution, num_threads);
source = voxelgrid_sampling_omp(*source, downsampling_resolution, num_threads);
// Create nearest neighbor search
auto target_search = std::make_shared<MyNearestNeighborSearch>(target);
auto source_search = std::make_shared<MyNearestNeighborSearch>(target);
// Estimate point normals
// You can use your custom nearest neighbor search here!
estimate_normals_omp(*target, *target_search, num_neighbors, num_threads);
estimate_normals_omp(*source, *source_search, num_neighbors, num_threads);
// Compute point features (e.g., FPFH, SHOT, etc.)
for (size_t i = 0; i < target->size(); i++) {
target->at(i).features.fill(1.0);
}
for (size_t i = 0; i < source->size(); i++) {
source->at(i).features.fill(1.0);
}
// Point-to-plane ICP + OMP-based parallel reduction
using PerPointFactor = PointToPlaneICPFactor; // Use point-to-plane ICP factor. Target must have normals.
using Reduction = ParallelReductionOMP; // Use OMP-based parallel reduction
using GeneralFactor = MyGeneralFactor; // Use custom general factor
using CorrespondenceRejector = MyCorrespondenceRejector; // Use custom correspondence rejector
using Optimizer = LevenbergMarquardtOptimizer; // Use Levenberg-Marquardt optimizer
Registration<PerPointFactor, Reduction, GeneralFactor, CorrespondenceRejector, Optimizer> registration;
registration.reduction.num_threads = num_threads;
registration.rejector.max_correpondence_dist_sq = max_correspondence_distance * max_correspondence_distance;
registration.general_factor.lambda = 1e8;
// Align point clouds
// Again, you can use your custom nearest neighbor search here!
Eigen::Isometry3d init_T_target_source = Eigen::Isometry3d::Identity();
auto result = registration.align(*target, *source, *target_search, init_T_target_source);
std::cout << "--- T_target_source ---" << std::endl << result.T_target_source.matrix() << std::endl;
std::cout << "converged:" << result.converged << std::endl;
std::cout << "error:" << result.error << std::endl;
std::cout << "iterations:" << result.iterations << std::endl;
std::cout << "num_inliers:" << result.num_inliers << std::endl;
std::cout << "--- H ---" << std::endl << result.H << std::endl;
std::cout << "--- b ---" << std::endl << result.b.transpose() << std::endl;
}
int main(int argc, char** argv) {
std::vector<Eigen::Vector4f> target_points = read_ply("data/target.ply");
std::vector<Eigen::Vector4f> source_points = read_ply("data/source.ply");
if (target_points.empty() || source_points.empty()) {
std::cerr << "error: failed to read points from data/(target|source).ply" << std::endl;
return 1;
}
example1(target_points, source_points);
example2(target_points, source_points);
return 0;
}