forked from koide3/small_gicp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01_basic_registration.cpp
71 lines (57 loc) · 3.62 KB
/
01_basic_registration.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// SPDX-FileCopyrightText: Copyright 2024 Kenji Koide
// SPDX-License-Identifier: MIT
/// @brief Basic point cloud registration example with small_gicp::align()
#include <iostream>
#include <small_gicp/benchmark/read_points.hpp>
#include <small_gicp/registration/registration_helper.hpp>
using namespace small_gicp;
/// @brief Most basic registration example.
void example1(const std::vector<Eigen::Vector4f>& target_points, const std::vector<Eigen::Vector4f>& source_points) {
RegistrationSetting setting;
setting.num_threads = 4; // Number of threads to be used
setting.downsampling_resolution = 0.25; // Downsampling resolution
setting.max_correspondence_distance = 1.0; // Maximum correspondence distance between points (e.g., triming threshold)
Eigen::Isometry3d init_T_target_source = Eigen::Isometry3d::Identity();
RegistrationResult result = align(target_points, source_points, init_T_target_source, setting);
std::cout << "--- T_target_source ---" << std::endl << result.T_target_source.matrix() << std::endl;
std::cout << "converged:" << result.converged << std::endl;
std::cout << "error:" << result.error << std::endl;
std::cout << "iterations:" << result.iterations << std::endl;
std::cout << "num_inliers:" << result.num_inliers << std::endl;
std::cout << "--- H ---" << std::endl << result.H << std::endl;
std::cout << "--- b ---" << std::endl << result.b.transpose() << std::endl;
}
/// @brief Example to perform preprocessing and registration separately.
void example2(const std::vector<Eigen::Vector4f>& target_points, const std::vector<Eigen::Vector4f>& source_points) {
int num_threads = 4; // Number of threads to be used
double downsampling_resolution = 0.25; // Downsampling resolution
int num_neighbors = 10; // Number of neighbor points used for normal and covariance estimation
// std::pair<PointCloud::Ptr, KdTree<PointCloud>::Ptr>
auto [target, target_tree] = preprocess_points(target_points, downsampling_resolution, num_neighbors, num_threads);
auto [source, source_tree] = preprocess_points(source_points, downsampling_resolution, num_neighbors, num_threads);
RegistrationSetting setting;
setting.num_threads = num_threads;
setting.max_correspondence_distance = 1.0; // Maximum correspondence distance between points (e.g., triming threshold)
Eigen::Isometry3d init_T_target_source = Eigen::Isometry3d::Identity();
RegistrationResult result = align(*target, *source, *target_tree, init_T_target_source, setting);
std::cout << "--- T_target_source ---" << std::endl << result.T_target_source.matrix() << std::endl;
std::cout << "converged:" << result.converged << std::endl;
std::cout << "error:" << result.error << std::endl;
std::cout << "iterations:" << result.iterations << std::endl;
std::cout << "num_inliers:" << result.num_inliers << std::endl;
std::cout << "--- H ---" << std::endl << result.H << std::endl;
std::cout << "--- b ---" << std::endl << result.b.transpose() << std::endl;
// Preprocessed points and trees can be reused for the next registration for efficiency
RegistrationResult result2 = align(*source, *target, *source_tree, Eigen::Isometry3d::Identity(), setting);
}
int main(int argc, char** argv) {
std::vector<Eigen::Vector4f> target_points = read_ply("data/target.ply");
std::vector<Eigen::Vector4f> source_points = read_ply("data/source.ply");
if (target_points.empty() || source_points.empty()) {
std::cerr << "error: failed to read points from data/(target|source).ply" << std::endl;
return 1;
}
example1(target_points, source_points);
example2(target_points, source_points);
return 0;
}