-
Notifications
You must be signed in to change notification settings - Fork 34
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #41 from Julie-Fabre/bleeding_edge
Ephys properties and cell type classification
- Loading branch information
Showing
15 changed files
with
391 additions
and
167 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
function unitClassif = bc_classifyCells(ephysProperties, paramEP) | ||
% classify striatal, GPe and cortical cells | ||
unitClassif = cell(size(ephysProperties,1),1); | ||
|
||
if ismember(region, {'CP', 'STR', 'Striatum', 'DMS', 'DLS', 'PS'}) %striatum, classification as in Peters et al., Nature, 2021 | ||
unitClassif() = 'MSN'; | ||
unitClassif() = 'FSI'; | ||
unitClassif() = 'TAN'; | ||
unitClassif() = 'UIN'; | ||
|
||
figure(); | ||
scatter3(ephysProperties.waveformDuration_peakTrough_us, ephysProperties.postSpikeSuppression_ms, ephysProperties.proplongISI); | ||
elseif ismember(region, {'Ctx', 'Cortical'}) % cortex, classification as in Peters et al., Cell Reports, 2022 | ||
elseif ismember(region, {'GPe', 'Globus Pallidus external'}) %striatum | ||
end | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
function unitClassif = bc_classifyCells(ephysProperties, paramEP) | ||
% classify striatal, GPe and cortical cells | ||
unitClassif = cell(size(ephysProperties,1),1); | ||
|
||
|
||
if ismember(region, {'CP', 'STR', 'Striatum', 'DMS', 'DLS', 'PS'}) %striatum, classification as in Peters et al., Nature, 2021 | ||
unitClassif(ephysProperties.waveformDuration_peakTrough_us > paramEP.templateDuration_CP_threshold &... | ||
ephysProperties.postSpikeSuppression_ms < paramEP.postSpikeSup_CP_threshold) = {'MSN'}; | ||
|
||
unitClassif(ephysProperties.waveformDuration_peakTrough_us <= paramEP.templateDuration_CP_threshold &... | ||
ephysProperties.proplongISI <= paramEP.propISI_CP_threshold) = {'FSI'}; | ||
|
||
unitClassif(ephysProperties.waveformDuration_peakTrough_us > paramEP.templateDuration_CP_threshold &... | ||
ephysProperties.postSpikeSuppression_ms >= paramEP.postSpikeSup_CP_threshold) = {'TAN'}; | ||
|
||
unitClassif(ephysProperties.waveformDuration_peakTrough_us <= paramEP.templateDuration_CP_threshold &... | ||
ephysProperties.proplongISI > paramEP.propISI_CP_threshold) = {'UIN'}; | ||
|
||
figure(); | ||
scatter3(ephysProperties.waveformDuration_peakTrough_us, ephysProperties.postSpikeSuppression_ms, ephysProperties.proplongISI, 4, 'filled'); hold on; | ||
set(gca, 'YDir', 'reverse' ); | ||
|
||
elseif ismember(region, {'Ctx', 'Cortex', 'Cortical'}) % cortex, classification as in Peters et al., Cell Reports, 2022 | ||
unitClassif(ephysProperties.waveformDuration_peakTrough_us > paramEP.templateDuration_Ctx_threshold) = {'Wide-spiking'}; | ||
|
||
unitClassif(ephysProperties.waveformDuration_peakTrough_us <= paramEP.templateDuration_Ctx_threshold) = {'Narrow-spiking'}; | ||
|
||
|
||
% elseif ismember(region, {'GPe', 'Globus Pallidus external'}) % GPe - work | ||
% in progress | ||
end | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
function [postSpikeSup_ms, tauRise_ms, tauDecay_ms, refractoryPeriod_ms] = bc_computeACGprop(thisACG, ACGbinSize, ACGduration) | ||
|
||
%% post spike suppression | ||
postSpikeSup = find(thisACG(500:1000) >= nanmean(thisACG(600:900))); % nanmean(ephysParams.ACG(iUnit, 900:1000)) also works. | ||
if ~isempty(postSpikeSup) | ||
postSpikeSup = postSpikeSup(1); | ||
else | ||
postSpikeSup = NaN; | ||
end | ||
postSpikeSup_ms = postSpikeSup / ACGbinSize / 1000; | ||
|
||
%% tau rise and decay | ||
% Assuming an exponential rise, we fit the ACG to an exponential function | ||
% and estimate tau from the fit parameters | ||
ACGlags = -ACGduration/2:ACGbinSize:ACGduration/2; | ||
[tauRise, ~] = estimateTau(ACGlags, thisACG, true); % True for rising phase | ||
[tauDecay, ~] = estimateTau(ACGlags, thisACG, false); % False for decaying phase | ||
tauRise_ms = tauRise * 1000; | ||
tauDecay_ms = tauDecay * 1000; | ||
|
||
%% refractory period | ||
% Assuming the refractory period is the time lag at which the ACG starts to rise | ||
ACGlags_from0 = ACGlags(ACGlags>0); | ||
refractoryPeriod = ACGlags_from0(find(thisACG(ACGlags>0) > (min(thisACG) + std(thisACG)), 1)); | ||
if isempty(refractoryPeriod) | ||
refractoryPeriod_ms = NaN; | ||
else | ||
refractoryPeriod_ms = refractoryPeriod *1000; | ||
end | ||
|
||
|
||
% figure(); | ||
% plot(ACGlags, thisACG) | ||
|
||
%% internal functions | ||
% Function to estimate tau rise/decay from ACG | ||
function [tau, fitResult] = estimateTau(lags, autoCorr, isRise) | ||
% Fit the rising or decaying part of the ACG | ||
if isRise | ||
relevantPart = autoCorr(lags >= 0); | ||
relevantLags = lags(lags >= 0); | ||
else | ||
relevantPart = autoCorr(lags <= 0); | ||
relevantLags = lags(lags <= 0); | ||
end | ||
|
||
% Exponential fit | ||
fitFunc = fittype('a*exp(-b*x)', 'independent', 'x'); | ||
[fitResult, ~] = fit(relevantLags', relevantPart', fitFunc, 'StartPoint', [max(relevantPart), 1]); | ||
|
||
% Tau is the inverse of the b parameter in the exponential | ||
tau = 1 / fitResult.b ; | ||
end | ||
|
||
end |
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,84 +1,91 @@ | ||
function ephysProperties = bc_computeAllEphysProperties(spikeTimes_samples, spikeTemplates, templateWaveforms_whitened, winv, paramEP, savePath) | ||
function [ephysProperties, unitClassif] = bc_computeAllEphysProperties(spikeTimes_samples, spikeTemplates, templateWaveforms,... | ||
templateAmplitudes, pcFeatures, channelPositions, paramEP, savePath) | ||
|
||
ephysProperties = struct; | ||
uniqueTemplates = unique(spikeTemplates); | ||
|
||
% get unit max channels | ||
maxChannels = bc_getWaveformMaxChannel(templateWaveforms); | ||
|
||
% extract and save or load in raw waveforms | ||
[rawWaveformsFull, rawWaveformsPeakChan, signalToNoiseRatio] = bc_extractRawWaveformsFast(paramEP, ... | ||
spikeTimes_samples, spikeTemplates, paramEP.reextractRaw, savePath, paramEP.verbose); % takes ~10' for | ||
% an average dataset, the first time it is run, <1min after that | ||
|
||
% remove any duplicate spikes | ||
[uniqueTemplates, ~, spikeTimes_samples, spikeTemplates, ~, ~, ~, ~, ~, ... | ||
ephysProperties.maxChannels] = ... | ||
bc_removeDuplicateSpikes(spikeTimes_samples, spikeTemplates, templateAmplitudes, ... | ||
pcFeatures, rawWaveformsFull, rawWaveformsPeakChan, signalToNoiseRatio, ... | ||
maxChannels, paramEP.removeDuplicateSpikes, paramEP.duplicateSpikeWindow_s, ... | ||
paramEP.ephys_sample_rate, paramEP.saveSpikes_withoutDuplicates, savePath, paramEP.recomputeDuplicateSpikes); | ||
|
||
spikeTimes = spikeTimes_samples ./ paramEP.ephys_sample_rate; %convert to seconds after using sample indices to extract raw waveforms | ||
%timeChunks = min(spikeTimes):param.deltaTimeChunk:max(spikeTimes); | ||
[maxChannels, templateWaveforms] = bc_getWaveformMaxChannelEP(templateWaveforms_whitened, winv); | ||
%% loop through units and get ephys properties | ||
% QQ divide in time chunks , add plotThis | ||
|
||
% Work in progress - divide recording into time chunks like in quality metrics | ||
% spikeTimes_seconds = spikeTimes_samples ./ param.ephys_sample_rate; %convert to seconds after using sample indices to extract raw waveforms | ||
% if param.computeTimeChunks | ||
% timeChunks = [min(spikeTimes_seconds):param.deltaTimeChunk:max(spikeTimes_seconds), max(spikeTimes_seconds)]; | ||
% else | ||
% timeChunks = [min(spikeTimes_seconds), max(spikeTimes_seconds)]; | ||
% end | ||
|
||
fprintf('\n Extracting ephys properties ... ') | ||
|
||
for iUnit = 1:length(uniqueTemplates) | ||
clearvars thisUnit theseSpikeTimes theseAmplis | ||
|
||
thisUnit = uniqueTemplates(iUnit); | ||
ephysProperties.clusterID(iUnit) = thisUnit; | ||
ephysProperties.phy_clusterID(iUnit) = thisUnit - 1; % this is the cluster ID as it appears in phy | ||
ephysProperties.clusterID(iUnit) = thisUnit; % this is the cluster ID as it appears in phy, 1-indexed (adding 1) | ||
theseSpikeTimes = spikeTimes(spikeTemplates == thisUnit); | ||
|
||
%% compute ACG | ||
%% ACG-based properties | ||
ephysProperties.acg(iUnit, :) = bc_computeACG(theseSpikeTimes, paramEP.ACGbinSize, paramEP.ACGduration, paramEP.plotThis); | ||
|
||
%% compute post spike suppression | ||
ephysProperties.postSpikeSuppression(iUnit) = bc_computePSS(ephysProperties.acg(iUnit, :)); | ||
|
||
%% compute template duration | ||
ephysProperties.templateDuration(iUnit) = bc_computeTemplateWaveformDuration(templateWaveforms(thisUnit, :, maxChannels(iUnit)),... | ||
paramEP.ephys_sample_rate); | ||
[ephysProperties.postSpikeSuppression_ms(iUnit), ephysProperties.tauRise_ms(iUnit), ephysProperties.tauDecay_ms(iUnit),... | ||
ephysProperties.refractoryPeriod_ms(iUnit)] = bc_computeACGprop(ephysProperties.acg(iUnit, :), paramEP.ACGbinSize, paramEP.ACGduration); | ||
|
||
%% compute firing rate | ||
ephysProperties.spike_rateSimple(iUnit) = bc_computeFR(theseSpikeTimes); | ||
|
||
%% compute proportion long ISIs | ||
ephysProperties.propLongISI(iUnit) = bc_computePropLongISI(theseSpikeTimes, paramEP.longISI); | ||
%% ISI-based properties | ||
ISIs = diff(spikeTimes); | ||
|
||
%% cv, cv2 | ||
[ephysProperties.proplongISI(iUnit), ephysProperties.coefficient_variation(iUnit),... | ||
ephysProperties.coefficient_variation2(iUnit), ephysProperties.isi_skewness(iUnit)] = bc_computeISIprop(ISIs, theseSpikeTimes); | ||
|
||
%% Fano factor | ||
%% Waveform-based properties | ||
% Work in progress: add option to use mean raw waveform | ||
[ephysProperties.waveformDuration_peakTrough_us(iUnit), ephysProperties.halfWidth_ms(iUnit), ... | ||
ephysProperties.peakTroughRatio(iUnit), ephysProperties.firstPeakTroughRatio(iUnit),... | ||
ephysProperties.nPeaks(iUnit), ephysProperties.nTroughs(iUnit), ephysProperties.isSomatic(iUnit)] =... | ||
bc_computeWaveformProp(templateWaveforms,thisUnit, ephysProperties.maxChannels(thisUnit),... | ||
paramEP.ephys_sample_rate, channelPositions, paramEP.minThreshDetectPeaksTroughs); | ||
|
||
%% skewISI | ||
%% Burstiness properties | ||
% Work in progress | ||
|
||
%% max firing rate | ||
%% Spike properties | ||
[ephysProperties.mean_firingRate(iUnit), ephysProperties.fanoFactor(iUnit),... | ||
ephysProperties.max_FiringRate(iUnit), ephysProperties.min_FiringRate(iUnit)] = bc_computeSpikeProp(theseSpikeTimes); | ||
|
||
|
||
%% bursting things | ||
%% Progress info | ||
if ((mod(iUnit, 100) == 0) || iUnit == length(uniqueTemplates)) && paramEP.verbose | ||
fprintf(['\n Finished ', num2str(iUnit), ' / ', num2str(length(uniqueTemplates)), ' units.']); | ||
end | ||
end | ||
|
||
%% save ephys properties | ||
ephysProperties.maxChannels = ephysProperties.maxChannels(uniqueTemplates)'; | ||
|
||
fprintf('\n Finished extracting ephys properties') | ||
try | ||
bc_saveEphysProperties(paramEP, ephysProperties, savePath); | ||
fprintf('\n Saved ephys properties to %s \n', savePath) | ||
%% get some summary plots | ||
|
||
|
||
catch | ||
warning('\n Warning, ephys properties not saved! \n') | ||
end | ||
%% plot | ||
paramEP.plotThis=0; | ||
if paramEP.plotThis | ||
% QQ plot histograms of each metric with the cutoffs set in params | ||
figure(); | ||
subplot(311) | ||
scatter(abs(ephysProperties.templateDuration), ephysProperties.postSpikeSuppression); | ||
xlabel('waveform duration (us)') | ||
ylabel('post spike suppression') | ||
makepretty; | ||
|
||
subplot(312) | ||
scatter(ephysProperties.postSpikeSuppression, ephysProperties.propLongISI); | ||
xlabel('post spike suppression') | ||
ylabel('prop long ISI') | ||
makepretty; | ||
|
||
subplot(313) | ||
scatter(abs(ephysProperties.templateDuration), ephysProperties.propLongISI); | ||
xlabel('waveform duration (us)') | ||
ylabel('prop long ISI') | ||
makepretty; | ||
end | ||
|
||
%% get some summary plots - work in progress | ||
|
||
|
||
end |
Oops, something went wrong.