Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reduce memory use of / solver #23

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 65 additions & 7 deletions examples/1_basic_workflow.jmd
Original file line number Diff line number Diff line change
Expand Up @@ -32,10 +32,13 @@ meta_p==meta_q
```

```julia
g = ConScape.Grid(size(mov_prob)...,
affinities=ConScape.graph_matrix_from_raster(mov_prob),
qualities=hab_qual,
costs=ConScape.MinusLog(), )
g = ConScape.Grid(
size(mov_prob)...,
affinities=ConScape.graph_matrix_from_raster(mov_prob),
qualities=hab_qual,
costs=ConScape.MinusLog()
)

```

```julia
Expand All @@ -58,16 +61,71 @@ g.target_qualities

```julia
g.affinities
g.affinities[1:100, 1:100]

```

```julia
(g.nrows, g.ncols, g.nrows*g.ncols)
g.costmatrix
```

# Step 2: Habitat creation

```julia
h = ConScape.GridRSP(g, θ=1.0);
using ProfileView
using BenchmarkTools

_, targetnodes = idx_and_nodes = ConScape._targetidx_and_nodes(g)

Z = Matrix{Float64}(undef, size(g.costmatrix, 1), length(idx_and_nodes[1]))

B = Matrix(sparse(targetnodes,
1:length(targetnodes),
1.0,
size(g.costmatrix, 1),
length(targetnodes))
)
Z = LinearAlgebra.copy_similar(B, Float64)

opt = ConScape.GridRSPoptimised(g; θ=1.0, idx_and_nodes, Z, B)
orig = ConScape.GridRSPoriginal(g; θ=1.0)
orig.Z .- opt.Z

Pref = ConScape._Pref(g.affinities)
W = ConScape._W(Pref, θ, g.costmatrix)
A = SparseArrays.I - W
F = lu(A)

@allocated h = ConScape.GridRSPoptimised(g; θ=1.0, idx_and_nodes, Z, F)
@allocated h = ConScape.GridRSPoptimised(g; θ=1.0)
@allocated h = ConScape.GridRSPoriginal(g; θ=1.0)
@b ConScape.GridRSPoptimised(g; θ=1.0, idx_and_nodes, Z, F)
@b ConScape.GridRSPoptimised(g; θ=1.0)
@b ConScape.GridRSPoriginal(g; θ=1.0)

@profview ConScape.GridRSPoptimised(g; θ=1.0, idx_and_nodes, Z, F)
@profview h = ConScape.GridRSPoriginal(g; θ=1.0)
h = ConScape.GridRSPoptimised(g; θ=1.0)
grsp = h
h
L = log.(h.Z)
using GLMakie
fig = Figure()
a1 = Axis(fig[1, 1])
a2 = Axis(fig[1, 2])
A1 = broadcast(collect(A)) do x
isapprox(x, 0) ? NaN : x
end
Z1 = broadcast(h.Z) do x
isapprox(x, 0.0; atol=1e-5) ? NaN : x
end
p1 = Makie.heatmap!(a1, A1; colormap=:viridis)
p2 = Makie.heatmap!(a2, Z1; colormap=:viridis)
Makie.Colorbar(fig[1, 1, Right()], p1)
Makie.Colorbar(fig[1, 2, Right()], p2)
linkaxes!(a1, a2)

```

show distance:
Expand All @@ -83,11 +141,11 @@ dists = ConScape.expected_cost(h);
```

```julia
ConScape.plot_values(g, dists[:,4300], title="RSP Expected Cost Distance")
ConScape.plot_values(g, dists[:, 4300], title="RSP Expected Cost Distance")
```

```julia
ConScape.plot_values(g, dists[:,4300], title="RSP Expected Cost Distance")
ConScape.plot_values(g, dists[:, 4300], title="RSP Expected Cost Distance")
# savefig("figure_ECDistance.png")
```

Expand Down
54 changes: 53 additions & 1 deletion src/gridrsp.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,59 @@ end

Construct a GridRSP from a `g::Grid` based on the inverse temperature parameter `θ::Real`.
"""
function GridRSP(g::Grid; θ=nothing)
function GridRSPoptimised(g::Grid;
θ=nothing,
idx_and_nodes=ConScape._targetidx_and_nodes(g),
targetidx=idx_and_nodes[1],
targetnodes=idx_and_nodes[2],
Z=Matrix(sparse(targetnodes,
1:length(targetnodes),
1.0,
size(g.costmatrix, 1),
length(targetnodes))),
F=nothing,
)
Pref = ConScape._Pref(g.affinities)
W = ConScape._W(Pref, θ, g.costmatrix)
A = SparseArrays.I - W

@debug("Computing fundamental matrix of non-absorbing paths (Z). Please be patient...")

if isnothing(F)
F = lu(A)
else
lu!(F, A)
end
transposeoptype = SparseArrays.LibSuiteSparse.UMFPACK_A

# SparseArrays.UMFPACK._AqldivB_kernel!(Z, F, B, transposeoptype)

# This is basically SparseArrays.UMFPACK._AqldivB_kernel!
# But we unroll it to avoid copies or allocation of B
B = zeros(size(Z, 2))
i = 1
n = targetnodes[i]
for col in 1:size(Z, 2)
# Manually set the diagonal
if targetnodes[i] == col
B[col] = 1.0
end
SparseArrays.UMFPACK.solve!(view(Z, :, col), F, B, transposeoptype)
if targetnodes[i] == col
B[col] = 0.0
i += 1
end
end

# Check that values in Z are not too small:
if minimum(Z) * minimum(nonzeros(g.costmatrix .* W)) == 0
@warn "Warning: Z-matrix contains too small values, which can lead to inaccurate results! Check that the graph is connected or try decreasing θ."
end

return GridRSP(g, θ, Pref, W, Z)
end

function GridRSPoriginal(g::Grid; θ=nothing)

Pref = _Pref(g.affinities)
W = _W(Pref, θ, g.costmatrix)
Expand Down
Loading