Skip to content

Commit

Permalink
performance tweaks
Browse files Browse the repository at this point in the history
  • Loading branch information
rafaqz committed Nov 25, 2024
1 parent c18ca9b commit a47ee7b
Show file tree
Hide file tree
Showing 2 changed files with 118 additions and 8 deletions.
72 changes: 65 additions & 7 deletions examples/1_basic_workflow.jmd
Original file line number Diff line number Diff line change
Expand Up @@ -32,10 +32,13 @@ meta_p==meta_q
```

```julia
g = ConScape.Grid(size(mov_prob)...,
affinities=ConScape.graph_matrix_from_raster(mov_prob),
qualities=hab_qual,
costs=ConScape.MinusLog(), )
g = ConScape.Grid(
size(mov_prob)...,
affinities=ConScape.graph_matrix_from_raster(mov_prob),
qualities=hab_qual,
costs=ConScape.MinusLog()
)

```

```julia
Expand All @@ -58,16 +61,71 @@ g.target_qualities

```julia
g.affinities
g.affinities[1:100, 1:100]

```

```julia
(g.nrows, g.ncols, g.nrows*g.ncols)
g.costmatrix
```

# Step 2: Habitat creation

```julia
h = ConScape.GridRSP(g, θ=1.0);
using ProfileView
using BenchmarkTools

_, targetnodes = idx_and_nodes = ConScape._targetidx_and_nodes(g)

Z = Matrix{Float64}(undef, size(g.costmatrix, 1), length(idx_and_nodes[1]))

B = Matrix(sparse(targetnodes,
1:length(targetnodes),
1.0,
size(g.costmatrix, 1),
length(targetnodes))
)
Z = LinearAlgebra.copy_similar(B, Float64)

opt = ConScape.GridRSPoptimised(g; θ=1.0, idx_and_nodes, Z, B)
orig = ConScape.GridRSPoriginal(g; θ=1.0)
orig.Z .- opt.Z

Pref = ConScape._Pref(g.affinities)
W = ConScape._W(Pref, θ, g.costmatrix)
A = SparseArrays.I - W
F = lu(A)

@allocated h = ConScape.GridRSPoptimised(g; θ=1.0, idx_and_nodes, Z, F)
@allocated h = ConScape.GridRSPoptimised(g; θ=1.0)
@allocated h = ConScape.GridRSPoriginal(g; θ=1.0)
@b ConScape.GridRSPoptimised(g; θ=1.0, idx_and_nodes, Z, F)
@b ConScape.GridRSPoptimised(g; θ=1.0)
@b ConScape.GridRSPoriginal(g; θ=1.0)

@profview ConScape.GridRSPoptimised(g; θ=1.0, idx_and_nodes, Z, F)
@profview h = ConScape.GridRSPoriginal(g; θ=1.0)
h = ConScape.GridRSPoptimised(g; θ=1.0)
grsp = h
h
L = log.(h.Z)
using GLMakie
fig = Figure()
a1 = Axis(fig[1, 1])
a2 = Axis(fig[1, 2])
A1 = broadcast(collect(A)) do x
isapprox(x, 0) ? NaN : x
end
Z1 = broadcast(h.Z) do x
isapprox(x, 0.0; atol=1e-5) ? NaN : x
end
p1 = Makie.heatmap!(a1, A1; colormap=:viridis)
p2 = Makie.heatmap!(a2, Z1; colormap=:viridis)
Makie.Colorbar(fig[1, 1, Right()], p1)
Makie.Colorbar(fig[1, 2, Right()], p2)
linkaxes!(a1, a2)

```

show distance:
Expand All @@ -83,11 +141,11 @@ dists = ConScape.expected_cost(h);
```

```julia
ConScape.plot_values(g, dists[:,4300], title="RSP Expected Cost Distance")
ConScape.plot_values(g, dists[:, 4300], title="RSP Expected Cost Distance")
```

```julia
ConScape.plot_values(g, dists[:,4300], title="RSP Expected Cost Distance")
ConScape.plot_values(g, dists[:, 4300], title="RSP Expected Cost Distance")
# savefig("figure_ECDistance.png")
```

Expand Down
54 changes: 53 additions & 1 deletion src/gridrsp.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,59 @@ end
Construct a GridRSP from a `g::Grid` based on the inverse temperature parameter `θ::Real`.
"""
function GridRSP(g::Grid; θ=nothing)
function GridRSPoptimised(g::Grid;
θ=nothing,
idx_and_nodes=ConScape._targetidx_and_nodes(g),
targetidx=idx_and_nodes[1],
targetnodes=idx_and_nodes[2],
Z=Matrix(sparse(targetnodes,
1:length(targetnodes),
1.0,
size(g.costmatrix, 1),
length(targetnodes))),
F=nothing,
)
Pref = ConScape._Pref(g.affinities)
W = ConScape._W(Pref, θ, g.costmatrix)
A = SparseArrays.I - W

@debug("Computing fundamental matrix of non-absorbing paths (Z). Please be patient...")

if isnothing(F)
F = lu(A)
else
lu!(F, A)
end
transposeoptype = SparseArrays.LibSuiteSparse.UMFPACK_A

# SparseArrays.UMFPACK._AqldivB_kernel!(Z, F, B, transposeoptype)

# This is basically SparseArrays.UMFPACK._AqldivB_kernel!
# But we unroll it to avoid copies or allocation of B
B = zeros(size(Z, 2))
i = 1
n = targetnodes[i]
for col in 1:size(Z, 2)
# Manually set the diagonal
if targetnodes[i] == col
B[col] = 1.0
end
SparseArrays.UMFPACK.solve!(view(Z, :, col), F, B, transposeoptype)
if targetnodes[i] == col
B[col] = 0.0
i += 1
end
end

# Check that values in Z are not too small:
if minimum(Z) * minimum(nonzeros(g.costmatrix .* W)) == 0
@warn "Warning: Z-matrix contains too small values, which can lead to inaccurate results! Check that the graph is connected or try decreasing θ."
end

return GridRSP(g, θ, Pref, W, Z)
end

function GridRSPoriginal(g::Grid; θ=nothing)

Pref = _Pref(g.affinities)
W = _W(Pref, θ, g.costmatrix)
Expand Down

0 comments on commit a47ee7b

Please sign in to comment.