- Table of content
- Description
- Installation
- Running constava from a containter (Docker)
- Usage
- License
- Citation
- Authors
- Acknowledgements
- Contact
Constava analyzes conformational ensembles calculating conformational state propensities and conformational state variability. The conformational state propensities indicate the likelihood of a residue residing in a given conformational state, while the conformational state variability is a measure of the residues ability to transiton between conformational states.
Each conformational state is a statistical model of based on the backbone dihedrals (phi, psi). The default models were derived from an analysis of NMR ensembles and chemical shifts. To analyze a conformational ensemble, the phi- and psi-angles for each conformational state in the ensemble need to be provided.
As input data Constava needs the backbone dihedral angles extracted from the
conformational ensemble. These dihedrals can be obtained using GROMACS'
gmx chi
module (set --input-format=xvg
) or using the constava dihedrals
submodule, which supports a wide range of MD and structure formats.
- Python 3.8 or higher
- pip
We recommend this installation for most users.
# Create a virtual environment (optional but recommended):
python3 -m venv constava
source constava/bin/activate
# Install the python module:
pip install constava
# Run tests to ensure the successful installation (optional but recommended):
constava test
If the package requires to be uninstalled, run pip uninstall constava
.
To install constava through conda please follow the instructions below (both Conda-Forge and Bioconda channels are required to install Constava dependencies).
# Create a conda environment (optional but recommended):
conda create -n constava python=3.12
conde activate constava
# Install constava
conda install -c bioconda -c conda-forge constava
# Run tests to ensure the successful installation (optional but recommended):
constava test
If the package requires to be uninstalled, run conda remove constava
.
To download and install the latest version of the software from the source code follow the instructions below.
# Clone the repository:
git clone https://bitbucket.org/bio2byte/constava/
cd constava
# Create a virtual environment (optional but recommended):
python3 -m venv constava
source constava/bin/activate
# Build and install the package from the packages root directory:
# ... build package from source
make build
# ... install it locally
make install
# ... test the installation
make test
If the package requires to be uninstalled, run make uninstall
in the terminal
from the package's root directory.
If you run constava
and see an error related to the library libtiff
such as libtiff.5.dylib' (no such file)
, you can try to fix it by installing libtiff
. For instance, using conda:
conda install libtiff
To use constava's Docker image generated by the Biocontainers project based on
the Bioconda package, follow the instructions below. You can find the container
tags on https://quay.io/repository/biocontainers/constava?tab=tags. In this
example, the latest tag is 1.1.0--pyhdfd78af_0
:
# Pull the constava image from quay.io
docker pull quay.io/biocontainers/constava:1.1.0--pyhdfd78af_0
# Run a container with the constava image
docker run \
-it quay.io/biocontainers/constava:1.1.0--pyhdfd78af_0 \
constava <COMMAND-LINE-OPTIONS>
# Optionally, you can mount a local directory to the container for accessing your data
docker run \
-it -v /path/to/your/data:/data quay.io/biocontainers/constava:1.1.0--pyhdfd78af_0 \
constava <COMMAND-LINE-OPTIONS>
To stop and remove the container, use the following commands:
# List all running containers
docker ps
# Stop a running container (replace <container_id> with the actual container ID)
docker stop <container_id>
# Remove the stopped container (replace <container_id> with the actual container ID)
docker rm <container_id>
If the image requires to be removed, run docker rmi -f quay.io/biocontainers/constava:1.1.0--pyhdfd78af_0
.
To use constava as a library inside the Docker container, follow the instructions below. This allows you to interact with the constava library directly within a Python session inside the Docker container.
# Start an interactive Python session inside the constava container
docker run \
--rm -it quay.io/biocontainers/constava:1.1.0--pyhdfd78af_0 \
python
# This will start a Python shell where you can import constava
# >>> import constava
# >>>
# Alternatively, execute a python script inside the constava container
docker run \
--rm -it quay.io/biocontainers/constava:1.1.0--pyhdfd78af_0 \
python <python-script>
If the image requires to be removed, run docker rmi -f quay.io/biocontainers/constava:1.1.0--pyhdfd78af_0
.
The software provides two modes of interaction. Shell user may use the software from the command line, while users skilled in Python can import it as a module. We provide a couple of usage examples in a Colab notebook.
The software is subdivided in three submodules:
The constava dihedrals
submodule provides a simple way to extract backbone
dihedral angles from MD simulations or PDB ensembles. For more information
run: constava dihedrals -h
. Alternatively, the backbone dihedrals may be
extracted with GROMACS' gmx chi
module.
The constava analyze
submodule analyzes the provided backbone dihedral angles
and infers the propensities for each residue to reside in a given
conformational state. For more information run: constava analyze -h
.
The constava fit-model
can be used to train a custom probabilistic model of
confromational states. The default models were derived from an analysis of NMR
ensembles and chemical shifts; they cover six conformational states:
- Core Helix - Exclusively alpha-helical, low backbone dynamics
- Surrounding Helix - Mostly alpha-helical, high backbone dynamics
- Core Sheet - Exclusively beta-sheet, low backbone dynamics
- Surrounding Sheet - Mostly extended conformation, high backbone dynamics
- Turn - Mostly turn, high backbone dynamics
- Other - Mostly coil, high backbone dynamics
To extract dihedral angles from a trajectory the constava dihedrals
submodule
is used.
usage: constava dihedrals [-h] [-s <file.pdb>] [-f <file.xtc> [<file.xtc> ...]] [-o OUTPUT] [--selection SELECTION] [--precision PRECISION] [--degrees] [-O]
The `constava dihedrals` submodule is used to extract the backbone dihedrals
needed for the analysis from confromational ensembles. By default the results
are written out in radians as this is the preferred format for
`constava analyze`.
Note: For the first and last residue in a protein only one backbone dihedral
can be extracted. Thus, those residues are omitted by default.
optional arguments:
-h, --help Show this help message and exit
Input & output options:
-s <file.pdb>, --structure <file.pdb>
Structure file with atomic information: [pdb, gro, tpr]
-f <file.xtc> [<file.xtc> ...], --trajectory <file.xtc> [<file.xtc> ...]
Trajectory file with coordinates: [pdb, gro, trr, xtc, crd, nc]
-o OUTPUT, --output OUTPUT
CSV file to write dihedral information to. (default: dihedrals.csv)
Input & output options:
--selection SELECTION
Selection for the dihedral calculation. (default: 'protein')
--precision PRECISION
Defines the number of decimals written for the dihedrals. (default: 5)
--degrees If set results are written in degrees instead of radians.
-O, --overwrite If set any previously generated output will be overwritten.
An example:
# Obtain backbone dihedrals (overwriting any existing files)
constava dihedrals -O -s "2mkx.gro" -f "2mkx.xtc" -o "2mkx_dihedrals.csv"
To analyze the backbone dihedral angles extracted from a confromational ensemble,
the constava analyze
submodule is used.
usage: constava analyze [-h] [-i <file.csv> [<file.csv> ...]] [--input-format {auto,xvg,csv}] [-o <file.csv>] [--output-format {auto,csv,json,tsv}] [-m <file.pkl>] [--window <int> [<int> ...]]
[--window-series <int> [<int> ...]] [--bootstrap <int> [<int> ...]] [--bootstrap-series <int> [<int> ...]] [--bootstrap-samples <int>] [--degrees] [--precision <int>] [--seed <int>] [-v]
The `constava analyze` submodule analyzes the provided backbone dihedral angles
and infers the propensities for each residue to reside in a given
conformational state.
Each conformational state is a statistical model of based on the backbone
dihedrals (phi, psi). The default models were derived from an analysis of NMR
ensembles and chemical shifts. To analyze a conformational ensemble, the phi-
and psi-angles for each conformational state in the ensemble need to be
provided.
As input data the backbone dihedral angles extracted from the conformational
ensemble need to be provided. Those can be generated using the
`constava dihedrals` submodule (`--input-format csv`) or GROMACS'
`gmx chi` module (`--input-format xvg`).
optional arguments:
-h, --help Show this help message and exit
Input & output options:
-i <file.csv> [<file.csv> ...], --input <file.csv> [<file.csv> ...]
Input file(s) that contain the dihedral angles.
--input-format {auto,xvg,csv}
Format of the input file: {'auto', 'csv', 'xvg'}
-o <file.csv>, --output <file.csv>
The file to write the results to.
--output-format {auto,csv,json,tsv}
Format of output file: {'csv', 'json', 'tsv'}. (default: 'auto')
Conformational state model options:
-m <file.pkl>, --load-model <file.pkl>
Load a conformational state model from the given pickled
file. If not provided, the default model will be used.
Subsampling options:
--window <int> [<int> ...]
Do inference using a moving reading-frame. Each reading
frame consists of <int> consecutive samples. Multiple
values can be provided.
--window-series <int> [<int> ...]
Do inference using a moving reading-frame. Each reading
frame consists of <int> consecutive samples. Return the
results for every window rather than the average. This can
result in very large output files. Multiple values can be
provided.
--bootstrap <int> [<int> ...]
Do inference using <Int> samples obtained through
bootstrapping. Multiple values can be provided.
--bootstrap-series <int> [<int> ...]
Do inference using <Int> samples obtained through
bootstrapping. Return the results for every subsample
rather than the average. This can result in very
large output files. Multiple values can be provided.
--bootstrap-samples <int>
When bootstrapping, sample <Int> times from the input data.
(default: 500)
Miscellaneous options:
--degrees Set this flag, if dihedrals in the input files are in
degrees.
--precision <int> Sets the number of decimals in the output files.
--seed <int> Set random seed for bootstrap sampling
-v, --verbose Set verbosity level of screen output. Flag can be given
multiple times (up to 2) to gradually increase output to
debugging mode.
An example:
# Run constava with debug-level output
constava analyze \
-i "2mkx_dihedrals.csv" \
-o "2mkx_constava.json" --output-format json \
--window 3 5 25 \
-vv
To train a custom probabilistic model of confromational states, the constava fit-model
submodule is used.
usage: constava fit-model [-h] [-i <file.json>] -o <file.pkl> [--model-type {kde,grid}] [--kde-bandwidth <float>] [--grid-points <int>] [--degrees] [-v]
The `constava fit-model` submodule is used to generate the probabilistic
conformational state models used in the analysis. By default, when running
`constava analyze` these models are generated on-the-fly. In selected cases
generating a model beforehand and loading it can be useful, though.
We provide two model types. kde-Models are the default. They are fast to fit
but may be slow in the inference in large conformational ensembles (e.g.,
long-timescale MD simulations). The idea of grid-Models is, to replace
the continuous probability density function of the kde-Model by a fixed set
of grid-points. The PDF for any sample is then estimated by linear
interpolation between the nearest grid points. This is slightly less
accurate than the kde-Model but speeds up inference significantly.
optional arguments:
-h, --help Show this help message and exit
Input and output options:
-i <file.json>, --input <file.json>
The data to which the new conformational state models will
be fitted. It should be provided as a JSON file. The
top-most key should indicate the names of the
conformational states. On the level below, lists of phi-/
psi pairs for each stat should be provided. If not provided
the default data from the publication will be used.
-o <file.pkl>, --output <file.pkl>
Write the generated model to a pickled file, that can be
loaded gain using `constava analyze --load-model`
Conformational state model options:
--model-type {kde,grid}
The probabilistic conformational state model used. The
default is `kde`. The alternative `grid` runs significantly
faster while slightly sacrificing accuracy: {'kde', 'grid'}
(default: 'kde')
--kde-bandwidth <float>
This flag controls the bandwidth of the Gaussian kernel
density estimator. (default: 0.13)
--grid-points <int> This flag controls how many grid points are used to
describe the probability density function. Only applies if
`--model-type` is set to `grid`. (default: 10000)
Miscellaneous options:
--degrees Set this flag, if dihedrals in `model-data` are in degrees
instead of radians.
-v, --verbose Set verbosity level of screen output. Flag can be given
multiple times (up to 2) to gradually increase output to
debugging mode.
An example:
# Generates a faster 'grid-interpolation model' using the default dataset
constava fit-model -v \
-o default_grid.pkl \
--model-type grid \
--kde-bandwidth 0.13 \
--grid-points 6400
The module provides the Constava
class a general interface to software's
features. The only notable exception is the extraction of dihedrals,
which is done through a separate function.
import pandas as pd
from constava.utils.dihedrals import calculate_dihedrals
# Calculate dihedrals as a DataFrame
dihedrals = calculate_dihedrals(structure="./2mkx.pdb", trajectory="2mkx.xtc")
# Write dihedrals out as a csv
dihedrals.to_csv("2mkx_dihedrals.csv", index=False, float_format="%.4f")
This example code will generate an output for a protein:
# Initialize Constava Python interface with parameters
import glob
from constava import Constava
# Define input and output files
PDBID = "2mkx"
input_files = glob.glob(f"./{PDBID}/ramaPhiPsi*.xvg")
output_file = f"./{PDBID}_constava.csv"
# Initialize Constava Python interface with parameters
c = Constava(
input_files = input_files,
output_file = output_file,
bootstrap = [3,5,10,25],
input_degrees = True,
verbose = 2)
# Alter parameters after initialization
c.set_param("window", [1,3,5])
# Run the calculation and write results
c.run()
This protein, with 48 residues and 100 frames per residue runs in about 1 minute.
The original MD ensembles from the manuscript can be found in https://doi.org/10.5281/zenodo.8160755.
Conformational state models are usually fitted at runtime. This is usually the
safest option to retain compatibility. For kde
models, refitting usually
takes less than a second and is almost neglectable. However, grid
interpolation
models take longer to generate. Thus, it makes sense to store them when
running multiple predictions on the same model.
Note: Conformational state model-pickles are intended for quickly rerunning simulations. They are not for storing or sharing your conformational state models. When you need to store or share a custom conformational state model, provide the training data and and model-fitting parameters.
from constava import Constava
# Fit the grid-interpolation model
c = Constava(verbose = 1)
csmodel = c.fit_csmodel(model_type = "grid",
kde_bandwidth = .13,
grid_points = 10_201)
# Write the fitted model out as a pickle
csmodel.dump_pickle("grid_model.pkl")
# Use the new model to analyze a confromational ensemble
PDBID = "2mkx"
input_files = glob.glob(f"./{PDBID}_dihedrals.csv")
output_file = f"./{PDBID}_constava.csv"
c = Constava(
input_files = input_files,
output_file = output_file,
model_load = "grid_model.pkl",
input_degrees=True,
window = [1, 5, 10, 25],
verbose = 1)
c.run()
In the following table, all available parameters of the Python interface (Constava
class) and their corresponding command line arguments are listed. The defaults for
parameters in Python and command line are the same.
Python parameter | Command line argument | Description |
---|---|---|
input_files : List[str] or str |
constava analyze --input <file> [<file> ...] |
Input file(s) that contain the dihedral angles. |
input_format : str |
constava analyze --input-format <enum> |
Format of the input file: {'auto', 'csv', 'xvg'} |
output_file : str |
constava analyze --output <file> |
The file to write the output to. |
output_format : str |
constava analyze --output-format <enum> |
Format of output file: {'auto', 'csv', 'json', 'tsv'} |
model_type : str |
constava fit-model --model-type <enum> |
The probabilistic conformational state model used. Default is kde . The alternative grid runs significantly faster while slightly sacrificing accuracy: {'kde', 'grid'} |
model_load : str |
constava analyze --load-model <file> |
Load a conformational state model from the given pickled file. |
model_data : str |
constava fit-model --input <file> |
Fit conformational state models to data provided in the given file. |
model_dump : str |
constava fit-model --output <file> |
Write the generated model to a pickled file, that can be loaded again using model_load . |
window : List[int] or int |
constava analyze --window <Int> [<Int> ...] |
Do inference using a moving reading-frame of consecutive samples. Multiple values can be given as a list. |
window_series : List[int] or int |
constava analyze --window-series <Int> [<Int> ...] |
Do inference using a moving reading-frame of consecutive samples. Return the results for every window rather than the average. Multiple values can be given as a list. |
bootstrap : List[int] or int |
constava analyze --bootstrap <Int> [<Int> ...] |
Do inference using samples obtained through bootstrapping. Multiple values can be given as a list. |
bootstrap_series : List[int] or int |
constava analyze --bootstrap-series <Int> [<Int> ...] |
Do inference using samples obtained through bootstrapping. Return the results for every bootstrap rather than the average. Multiple values can be given as a list. |
bootstrap_samples : int |
constava analyze --bootstrap-samples <Int> |
When bootstrapping, sample times from the input data. |
input_degrees : bool |
constava analyze --degrees |
Set True if input files are in degrees. |
model_data_degrees : bool |
constava fit-model --degrees |
Set True if the data given under model_data to is given in degrees. |
precision : int |
constava analyze --precision <int> |
Sets the number of decimals in the output files. By default, 4 decimals. |
kde_bandwidth : float |
constava fit-model --kde-bandwidth <float> |
This controls the bandwidth of the Gaussian kernel density estimator. |
grid_points : int |
constava analyze --grid-points <int> |
When model_type equals 'grid', this controls how many grid points are used to describe the probability density function. |
seed : int |
constava analyze --seed <int> |
Set the random seed especially for bootstrapping. |
verbose : int |
constava <...> -v [-v] |
Set verbosity level of screen output. |
Distributed under the GNU General Public License v3 (GPLv3) License.
Gavalda-Garcia, J., Bickel, D., Roca-Martinez, J., Raimondi, D., Orlando, G., & Vranken, W. (2024). Data-driven probabilistic definition of the low energy conformational states of protein residues. NAR Genomics and Bioinformatics, 6(3), lqae082. https://doi.org/10.1093/nargab/lqae082
-
Jose Gavalda-Garcia♠ - jose.gavalda.garcia@vub.be
-
David Bickel♠ - david.bickel@vub.be
-
Joel Roca-Martinez - joel.roca.martinez@vub.be
-
Daniele Raimondi - - daniele.raimondi@kuleuven.be
-
Gabriele Orlando - - gabriele.orlando@kuleuven.be
-
Wim Vranken - - Personal page - wim.vranken@vub.be
♠ Authors contributed equally to this work.
We thank Adrian Diaz for the invaluable help in the distribution of this software.
Wim Vranken - wim.vranken@vub.be
Bio2Byte website: https://bio2byte.be/