Skip to content

PyTorch implementation of LARS (Layer-wise Adaptive Rate Scaling)

License

Notifications You must be signed in to change notification settings

4uiiurz1/pytorch-lars

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorch implementation of LARS (Layer-wise Adaptive Rate Scaling)

This repository contains code for LARS (Layer-wise Adaptive Rate Scaling) based on Large Batch Training of Convolutional Networks implemented in PyTorch.

Requirements

  • Python 3.6
  • PyTorch 1.0

Usage

from lars import LARS

optimizer = torch.optim.LARS(model.parameters(), lr=0.1, momentum=0.9)
optimizer.zero_grad()
loss_fn(model(input), target).backward()
optimizer.step()

Results

CIFAR-10

batch size = 4096 batch size = 8192

About

PyTorch implementation of LARS (Layer-wise Adaptive Rate Scaling)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages