-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_image.py
43 lines (37 loc) · 1.49 KB
/
create_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import argparse
import math
import numpy as np
from PIL import Image
from mnist_util import mnist_read_images
parser = argparse.ArgumentParser()
parser.add_argument('--input', type=str, required=True)
parser.add_argument('--output', type=str, default='data/mnist_input_data.png')
parser.add_argument('--cols', type=int, default=64)
parser.add_argument('--rows', type=int, default=36)
parser.add_argument('--resize', type=bool, default=False)
parser.add_argument('--randomize', type=bool, default=False)
parser.add_argument('--width', type=int, default=1920)
parser.add_argument('--height', type=int, default=1080)
args = parser.parse_args()
images = mnist_read_images(args.input)
if args.cols * args.rows > len(images):
args.rows = math.ceil(count / args.cols)
if args.randomize:
images_index_sample = np.random.choice(
range(len(images)), args.cols * args.rows, replace=False)
else:
images_index_sample = range(args.cols * args.rows)
images_sample = images[images_index_sample]
width = images.shape[2]
height = images.shape[1]
output_image = Image.new('L', (width * args.cols, height * args.rows))
for index, pixels in enumerate(images_sample):
image = Image.fromarray(pixels, 'L')
left = width * (index % args.cols)
right = left + width
upper = image.height * (index // args.cols)
lower = upper + height
output_image.paste(image, (left, upper, right, lower))
if args.resize:
output_image = output_image.resize((args.width, args.height))
output_image.save(args.output)