forked from serend1p1ty/SeqNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
131 lines (112 loc) · 4.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse
import datetime
import os.path as osp
import time
import torch
import torch.utils.data
from datasets import build_test_loader, build_train_loader
from defaults import get_default_cfg
from engine import evaluate_performance, train_one_epoch
from models.seqnet import SeqNet
from utils.utils import mkdir, resume_from_ckpt, save_on_master, set_random_seed
def main(args):
cfg = get_default_cfg()
if args.cfg_file:
cfg.merge_from_file(args.cfg_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
device = torch.device(cfg.DEVICE)
if cfg.SEED >= 0:
set_random_seed(cfg.SEED)
print("Creating model")
model = SeqNet(cfg)
model.to(device)
print("Loading data")
train_loader = build_train_loader(cfg)
gallery_loader, query_loader = build_test_loader(cfg)
if args.eval:
assert args.ckpt, "--ckpt must be specified when --eval enabled"
resume_from_ckpt(args.ckpt, model)
evaluate_performance(
model,
gallery_loader,
query_loader,
device,
use_gt=cfg.EVAL_USE_GT,
use_cache=cfg.EVAL_USE_CACHE,
use_cbgm=cfg.EVAL_USE_CBGM,
)
exit(0)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(
params,
lr=cfg.SOLVER.BASE_LR,
momentum=cfg.SOLVER.SGD_MOMENTUM,
weight_decay=cfg.SOLVER.WEIGHT_DECAY,
)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=cfg.SOLVER.LR_DECAY_MILESTONES, gamma=0.1
)
start_epoch = 0
if args.resume:
assert args.ckpt, "--ckpt must be specified when --resume enabled"
start_epoch = resume_from_ckpt(args.ckpt, model, optimizer, lr_scheduler) + 1
print("Creating output folder")
output_dir = cfg.OUTPUT_DIR
mkdir(output_dir)
path = osp.join(output_dir, "config.yaml")
with open(path, "w") as f:
f.write(cfg.dump())
print(f"Full config is saved to {path}")
tfboard = None
if cfg.TF_BOARD:
from torch.utils.tensorboard import SummaryWriter
tf_log_path = osp.join(output_dir, "tf_log")
mkdir(tf_log_path)
tfboard = SummaryWriter(log_dir=tf_log_path)
print(f"TensorBoard files are saved to {tf_log_path}")
print("Start training")
start_time = time.time()
for epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCHS):
train_one_epoch(cfg, model, optimizer, train_loader, device, epoch, tfboard)
lr_scheduler.step()
if (epoch + 1) % cfg.EVAL_PERIOD == 0 or epoch == cfg.SOLVER.MAX_EPOCHS - 1:
evaluate_performance(
model,
gallery_loader,
query_loader,
device,
use_gt=cfg.EVAL_USE_GT,
use_cache=cfg.EVAL_USE_CACHE,
use_cbgm=cfg.EVAL_USE_CBGM,
)
if (epoch + 1) % cfg.CKPT_PERIOD == 0 or epoch == cfg.SOLVER.MAX_EPOCHS - 1:
save_on_master(
{
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
},
osp.join(output_dir, f"epoch_{epoch}.pth"),
)
if tfboard:
tfboard.close()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"Total training time {total_time_str}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train a person search network.")
parser.add_argument("--cfg", dest="cfg_file", help="Path to configuration file.")
parser.add_argument(
"--eval", action="store_true", help="Evaluate the performance of a given checkpoint."
)
parser.add_argument(
"--resume", action="store_true", help="Resume from the specified checkpoint."
)
parser.add_argument("--ckpt", help="Path to checkpoint to resume or evaluate.")
parser.add_argument(
"opts", nargs=argparse.REMAINDER, help="Modify config options using the command-line"
)
args = parser.parse_args()
main(args)