-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_logging.py
187 lines (157 loc) · 6.72 KB
/
model_logging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# attributed to https://github.com/vincentherrmann/pytorch-wavenet/blob/master/model_logging.py
import tensorflow as tf
import numpy as np
import scipy.misc
import threading
import torch
try:
from StringIO import StringIO # Python 2.7
except ImportError:
from io import BytesIO # Python 3.x
class Logger:
def __init__(self,
log_interval=50,
validation_interval=200,
generate_interval=500,
trainer=None,
generate_function=None):
self.trainer = trainer
self.log_interval = log_interval
self.validation_interval = validation_interval
self.generate_interval = generate_interval
self.accumulated_loss = 0
self.generate_function = generate_function
if self.generate_function is not None:
self.generate_thread = threading.Thread(target=self.generate_function)
self.generate_function.daemon = True
def log(self, current_step, current_loss):
self.accumulated_loss += current_loss
if current_step % self.log_interval == 0:
self.log_loss(current_step)
self.accumulated_loss = 0
if current_step % self.validation_interval == 0:
self.validate(current_step)
if current_step % self.generate_interval == 0:
self.generate(current_step)
def log_loss(self, current_step):
avg_loss = self.accumulated_loss / self.log_interval
print("loss at step " + str(current_step) + ": " + str(avg_loss))
def validate(self, current_step):
avg_loss, avg_accuracy = self.trainer.validate()
print("validation loss: " + str(avg_loss))
print("validation accuracy: " + str(avg_accuracy * 100) + "%")
def generate(self, current_step):
if self.generate_function is None:
return
if self.generate_thread.is_alive():
print("Last generate is still running, skipping this one")
else:
self.generate_thread = threading.Thread(target=self.generate_function,
args=[current_step])
self.generate_thread.daemon = True
self.generate_thread.start()
# Code referenced from https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514
class TensorboardLogger(Logger):
def __init__(self,
log_interval=50,
validation_interval=200,
generate_interval=500,
trainer=None,
generate_function=None,
log_dir='logs'):
super().__init__(log_interval, validation_interval, generate_interval, trainer, generate_function)
#self.writer = tf.summary.FileWriter(log_dir)
#different from the original code to accomodate parallelism
self.writer = tf.summary.create_file_writer('log_dir')
def log_loss(self, current_step):
# loss
avg_loss = self.accumulated_loss / self.log_interval
self.scalar_summary('loss', avg_loss, current_step)
# parameter histograms
for tag, value, in self.trainer.model.named_parameters():
tag = tag.replace('.', '/')
self.histo_summary(tag, value.data.cpu().numpy(), current_step)
if value.grad is not None:
self.histo_summary(tag + '/grad', value.grad.data.cpu().numpy(), current_step)
def validate(self, current_step):
avg_loss, avg_accuracy = self.trainer.validate()
self.scalar_summary('validation loss', avg_loss, current_step)
self.scalar_summary('validation accuracy', avg_accuracy, current_step)
def log_audio(self, step):
samples = self.generate_function()
tf_samples = tf.convert_to_tensor(samples)
self.audio_summary('audio sample', tf_samples, step, sr=16000)
def scalar_summary(self, tag, value, step):
"""Log a scalar variable."""
my_value = value
with self.writer.as_default():
tf.summary.scalar(tag, torch.Tensor.cpu(torch.tensor([my_value])).item(), step=step)
'''
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
self.writer.add_summary(summary, step)
'''
return
def image_summary(self, tag, images, step):
"""Log a list of images."""
'''
img_summaries = []
for i, img in enumerate(images):
# Write the image to a string
try:
s = StringIO()
except:
s = BytesIO()
scipy.misc.toimage(img).save(s, format="png")
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1])
# Create a Summary value
img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum))
# Create and write Summary
summary = tf.Summary(value=img_summaries)
self.writer.add_summary(summary, step)
'''
return
def audio_summary(self, tag, sample, step, sr=16000):
'''
with tf.Session() as sess:
audio_summary = tf.summary.audio(tag, sample, sample_rate=sr, max_outputs=4)
summary = sess.run(audio_summary)
self.writer.add_summary(summary, step)
self.writer.flush()
'''
return
def histo_summary(self, tag, values, step, bins=200):
"""Log a histogram of the tensor of values."""
'''
# Create a histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill the fields of the histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values ** 2))
# Drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
'''
return
def tensor_summary(self, tag, tensor, step):
'''
tf_tensor = tf.Variable(tensor).to_proto()
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, tensor=tf_tensor)])
#summary = tf.summary.tensor_summary(name=tag, tensor=tensor)
self.writer.add_summary(summary, step)
'''
return