forked from google-deepmind/alphafold
-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_alphafold.py
303 lines (262 loc) · 11.8 KB
/
run_alphafold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Full AlphaFold protein structure prediction script."""
import json
import os
import pathlib
import pickle
import random
import sys
import time
from typing import Dict
from absl import app
from absl import flags
from absl import logging
import numpy as np
from alphafold.common import protein
from alphafold.data import pipeline
from alphafold.data import templates
from alphafold.model import data
from alphafold.model import config
from alphafold.model import model
from alphafold.relax import relax
# Internal import (7716).
flags.DEFINE_list('fasta_paths', None, 'Paths to FASTA files, each containing '
'one sequence. Paths should be separated by commas. '
'All FASTA paths must have a unique basename as the '
'basename is used to name the output directories for '
'each prediction.')
flags.DEFINE_string('output_dir', None, 'Path to a directory that will '
'store the results.')
flags.DEFINE_list('model_names', None, 'Names of models to use.')
flags.DEFINE_string('data_dir', None, 'Path to directory of supporting data.')
flags.DEFINE_string('jackhmmer_binary_path', '/usr/bin/jackhmmer',
'Path to the JackHMMER executable.')
flags.DEFINE_string('hhblits_binary_path', '/usr/bin/hhblits',
'Path to the HHblits executable.')
flags.DEFINE_string('hhsearch_binary_path', '/usr/bin/hhsearch',
'Path to the HHsearch executable.')
flags.DEFINE_string('kalign_binary_path', '/usr/bin/kalign',
'Path to the Kalign executable.')
flags.DEFINE_string('uniref90_database_path', None, 'Path to the Uniref90 '
'database for use by JackHMMER.')
flags.DEFINE_string('mgnify_database_path', None, 'Path to the MGnify '
'database for use by JackHMMER.')
flags.DEFINE_string('bfd_database_path', None, 'Path to the BFD '
'database for use by HHblits.')
flags.DEFINE_string('small_bfd_database_path', None, 'Path to the small '
'version of BFD used with the "reduced_dbs" preset.')
flags.DEFINE_string('uniclust30_database_path', None, 'Path to the Uniclust30 '
'database for use by HHblits.')
flags.DEFINE_string('pdb70_database_path', None, 'Path to the PDB70 '
'database for use by HHsearch.')
flags.DEFINE_string('template_mmcif_dir', None, 'Path to a directory with '
'template mmCIF structures, each named <pdb_id>.cif')
flags.DEFINE_string('max_template_date', None, 'Maximum template release date '
'to consider. Important if folding historical test sets.')
flags.DEFINE_string('obsolete_pdbs_path', None, 'Path to file containing a '
'mapping from obsolete PDB IDs to the PDB IDs of their '
'replacements.')
flags.DEFINE_enum('preset', 'full_dbs',
['reduced_dbs', 'full_dbs', 'casp14'],
'Choose preset model configuration - no ensembling and '
'smaller genetic database config (reduced_dbs), no '
'ensembling and full genetic database config (full_dbs) or '
'full genetic database config and 8 model ensemblings '
'(casp14).')
flags.DEFINE_boolean('benchmark', False, 'Run multiple JAX model evaluations '
'to obtain a timing that excludes the compilation time, '
'which should be more indicative of the time required for '
'inferencing many proteins.')
flags.DEFINE_integer('random_seed', None, 'The random seed for the data '
'pipeline. By default, this is randomly generated. Note '
'that even if this is set, Alphafold may still not be '
'deterministic, because processes like GPU inference are '
'nondeterministic.')
FLAGS = flags.FLAGS
MAX_TEMPLATE_HITS = 20
RELAX_MAX_ITERATIONS = 0
RELAX_ENERGY_TOLERANCE = 2.39
RELAX_STIFFNESS = 10.0
RELAX_EXCLUDE_RESIDUES = []
RELAX_MAX_OUTER_ITERATIONS = 20
def _check_flag(flag_name: str, preset: str, should_be_set: bool):
if should_be_set != bool(FLAGS[flag_name].value):
verb = 'be' if should_be_set else 'not be'
raise ValueError(f'{flag_name} must {verb} set for preset "{preset}"')
def predict_structure(
fasta_path: str,
fasta_name: str,
output_dir_base: str,
data_pipeline: pipeline.DataPipeline,
model_runners: Dict[str, model.RunModel],
amber_relaxer: relax.AmberRelaxation,
benchmark: bool,
random_seed: int):
"""Predicts structure using AlphaFold for the given sequence."""
timings = {}
output_dir = os.path.join(output_dir_base, fasta_name)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
msa_output_dir = os.path.join(output_dir, 'msas')
if not os.path.exists(msa_output_dir):
os.makedirs(msa_output_dir)
# Get features.
t_0 = time.time()
feature_dict = data_pipeline.process(
input_fasta_path=fasta_path,
msa_output_dir=msa_output_dir)
timings['features'] = time.time() - t_0
# Write out features as a pickled dictionary.
features_output_path = os.path.join(output_dir, 'features.pkl')
with open(features_output_path, 'wb') as f:
pickle.dump(feature_dict, f, protocol=4)
relaxed_pdbs = {}
plddts = {}
# Run the models.
for model_name, model_runner in model_runners.items():
logging.info('Running model %s', model_name)
t_0 = time.time()
processed_feature_dict = model_runner.process_features(
feature_dict, random_seed=random_seed)
timings[f'process_features_{model_name}'] = time.time() - t_0
t_0 = time.time()
prediction_result = model_runner.predict(processed_feature_dict)
t_diff = time.time() - t_0
timings[f'predict_and_compile_{model_name}'] = t_diff
logging.info(
'Total JAX model %s predict time (includes compilation time, see --benchmark): %.0f?',
model_name, t_diff)
if benchmark:
t_0 = time.time()
model_runner.predict(processed_feature_dict)
timings[f'predict_benchmark_{model_name}'] = time.time() - t_0
# Get mean pLDDT confidence metric.
plddts[model_name] = np.mean(prediction_result['plddt'])
# Save the model outputs.
result_output_path = os.path.join(output_dir, f'result_{model_name}.pkl')
with open(result_output_path, 'wb') as f:
pickle.dump(prediction_result, f, protocol=4)
unrelaxed_protein = protein.from_prediction(processed_feature_dict,
prediction_result)
unrelaxed_pdb_path = os.path.join(output_dir, f'unrelaxed_{model_name}.pdb')
with open(unrelaxed_pdb_path, 'w') as f:
f.write(protein.to_pdb(unrelaxed_protein))
# Relax the prediction.
t_0 = time.time()
relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
timings[f'relax_{model_name}'] = time.time() - t_0
relaxed_pdbs[model_name] = relaxed_pdb_str
# Save the relaxed PDB.
relaxed_output_path = os.path.join(output_dir, f'relaxed_{model_name}.pdb')
with open(relaxed_output_path, 'w') as f:
f.write(relaxed_pdb_str)
# Rank by pLDDT and write out relaxed PDBs in rank order.
ranked_order = []
for idx, (model_name, _) in enumerate(
sorted(plddts.items(), key=lambda x: x[1], reverse=True)):
ranked_order.append(model_name)
ranked_output_path = os.path.join(output_dir, f'ranked_{idx}.pdb')
with open(ranked_output_path, 'w') as f:
f.write(relaxed_pdbs[model_name])
ranking_output_path = os.path.join(output_dir, 'ranking_debug.json')
with open(ranking_output_path, 'w') as f:
f.write(json.dumps({'plddts': plddts, 'order': ranked_order}, indent=4))
logging.info('Final timings for %s: %s', fasta_name, timings)
timings_output_path = os.path.join(output_dir, 'timings.json')
with open(timings_output_path, 'w') as f:
f.write(json.dumps(timings, indent=4))
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
use_small_bfd = FLAGS.preset == 'reduced_dbs'
_check_flag('small_bfd_database_path', FLAGS.preset,
should_be_set=use_small_bfd)
_check_flag('bfd_database_path', FLAGS.preset,
should_be_set=not use_small_bfd)
_check_flag('uniclust30_database_path', FLAGS.preset,
should_be_set=not use_small_bfd)
if FLAGS.preset in ('reduced_dbs', 'full_dbs'):
num_ensemble = 1
elif FLAGS.preset == 'casp14':
num_ensemble = 8
# Check for duplicate FASTA file names.
fasta_names = [pathlib.Path(p).stem for p in FLAGS.fasta_paths]
if len(fasta_names) != len(set(fasta_names)):
raise ValueError('All FASTA paths must have a unique basename.')
template_featurizer = templates.TemplateHitFeaturizer(
mmcif_dir=FLAGS.template_mmcif_dir,
max_template_date=FLAGS.max_template_date,
max_hits=MAX_TEMPLATE_HITS,
kalign_binary_path=FLAGS.kalign_binary_path,
release_dates_path=None,
obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)
data_pipeline = pipeline.DataPipeline(
jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
hhblits_binary_path=FLAGS.hhblits_binary_path,
hhsearch_binary_path=FLAGS.hhsearch_binary_path,
uniref90_database_path=FLAGS.uniref90_database_path,
mgnify_database_path=FLAGS.mgnify_database_path,
bfd_database_path=FLAGS.bfd_database_path,
uniclust30_database_path=FLAGS.uniclust30_database_path,
small_bfd_database_path=FLAGS.small_bfd_database_path,
pdb70_database_path=FLAGS.pdb70_database_path,
template_featurizer=template_featurizer,
use_small_bfd=use_small_bfd)
model_runners = {}
for model_name in FLAGS.model_names:
model_config = config.model_config(model_name)
model_config.data.eval.num_ensemble = num_ensemble
model_params = data.get_model_haiku_params(
model_name=model_name, data_dir=FLAGS.data_dir)
model_runner = model.RunModel(model_config, model_params)
model_runners[model_name] = model_runner
logging.info('Have %d models: %s', len(model_runners),
list(model_runners.keys()))
amber_relaxer = relax.AmberRelaxation(
max_iterations=RELAX_MAX_ITERATIONS,
tolerance=RELAX_ENERGY_TOLERANCE,
stiffness=RELAX_STIFFNESS,
exclude_residues=RELAX_EXCLUDE_RESIDUES,
max_outer_iterations=RELAX_MAX_OUTER_ITERATIONS)
random_seed = FLAGS.random_seed
if random_seed is None:
random_seed = random.randrange(sys.maxsize)
logging.info('Using random seed %d for the data pipeline', random_seed)
# Predict structure for each of the sequences.
for fasta_path, fasta_name in zip(FLAGS.fasta_paths, fasta_names):
predict_structure(
fasta_path=fasta_path,
fasta_name=fasta_name,
output_dir_base=FLAGS.output_dir,
data_pipeline=data_pipeline,
model_runners=model_runners,
amber_relaxer=amber_relaxer,
benchmark=FLAGS.benchmark,
random_seed=random_seed)
if __name__ == '__main__':
flags.mark_flags_as_required([
'fasta_paths',
'output_dir',
'model_names',
'data_dir',
'preset',
'uniref90_database_path',
'mgnify_database_path',
'pdb70_database_path',
'template_mmcif_dir',
'max_template_date',
'obsolete_pdbs_path',
])
app.run(main)