-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathyolov3_layer_utils.py
85 lines (62 loc) · 2.67 KB
/
yolov3_layer_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from __future__ import division, print_function
import tensorflow.contrib.slim as slim
import tensorflow as tf
def conv2d(inputs, filters, kernel_size, strides=1): # stride>1时padding,valid卷积实现same
def _fixed_padding(inputs, kernel_size):
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
[pad_beg, pad_end], [0, 0]], mode='CONSTANT')
return padded_inputs
if strides > 1:
inputs = _fixed_padding(inputs, kernel_size)
inputs = slim.conv2d(inputs, filters, kernel_size, stride=strides,
padding=('SAME' if strides == 1 else 'VALID'))
return inputs
def darknet53_body(inputs):
def res_block(inputs, filters): # same卷积 先1x1降channel再3x3升回channel,再残差连接
shortcut = inputs
net = conv2d(inputs, filters * 1, 1)
net = conv2d(net, filters * 2, 3)
net = net + shortcut
return net
# first two conv2d layers
net = conv2d(inputs, 32, 3, strides=1) # same:416*416*32
net = conv2d(net, 64, 3, strides=2) # padding_valid:208*208*64
# res_block * 1
net = res_block(net, 32) # 208*208*64->same:208*208*32->same:208*208*64
net = conv2d(net, 128, 3, strides=2) # padding_valid:104*104*128
# res_block * 2
for i in range(2):
net = res_block(net, 64) # 104*104*128
net = conv2d(net, 256, 3, strides=2) # padding_valid:52*52*256
# res_block * 8
for i in range(8):
net = res_block(net, 128) # 52*52*256
route_1 = net
net = conv2d(net, 512, 3, strides=2) # padding_valid:26*26*512
# res_block * 8
for i in range(8):
net = res_block(net, 256) # 26*26*512
route_2 = net
net = conv2d(net, 1024, 3, strides=2) # padding_valid:13*13*1024
# res_block * 4
for i in range(4):
net = res_block(net, 512) # 13*13*1024
route_3 = net
return route_1, route_2, route_3
def yolo_block(inputs, filters): # 1x1->3x3->1x1->3x3->1x1(route)------->3x3(net)
net = conv2d(inputs, filters * 1, 1)
net = conv2d(net, filters * 2, 3)
net = conv2d(net, filters * 1, 1)
net = conv2d(net, filters * 2, 3)
net = conv2d(net, filters * 1, 1)
route = net
net = conv2d(net, filters * 2, 3)
return route, net
def upsample_layer(inputs, out_shape): # 最近邻采样resize_image
new_height, new_width = out_shape[1], out_shape[2]
# NOTE: here height is the first
inputs = tf.image.resize_nearest_neighbor(inputs, (new_height, new_width), align_corners=True, name='upsampled')
return inputs