forked from aimacode/aima-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmdp.py
268 lines (211 loc) · 9.66 KB
/
mdp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""Markov Decision Processes (Chapter 17)
First we define an MDP, and the special case of a GridMDP, in which
states are laid out in a 2-dimensional grid. We also represent a policy
as a dictionary of {state: action} pairs, and a Utility function as a
dictionary of {state: number} pairs. We then define the value_iteration
and policy_iteration algorithms."""
from utils import argmax, vector_add, orientations, turn_right, turn_left
import random
class MDP:
"""A Markov Decision Process, defined by an initial state, transition model,
and reward function. We also keep track of a gamma value, for use by
algorithms. The transition model is represented somewhat differently from
the text. Instead of P(s' | s, a) being a probability number for each
state/state/action triplet, we instead have T(s, a) return a
list of (p, s') pairs. We also keep track of the possible states,
terminal states, and actions for each state. [page 646]"""
def __init__(self, init, actlist, terminals, transitions=None, reward=None, states=None, gamma=0.9):
if not (0 < gamma <= 1):
raise ValueError("An MDP must have 0 < gamma <= 1")
# collect states from transitions table if not passed.
self.states = states or self.get_states_from_transitions(transitions)
self.init = init
if isinstance(actlist, list):
# if actlist is a list, all states have the same actions
self.actlist = actlist
elif isinstance(actlist, dict):
# if actlist is a dict, different actions for each state
self.actlist = actlist
self.terminals = terminals
self.transitions = transitions or {}
if not self.transitions:
print("Warning: Transition table is empty.")
self.gamma = gamma
self.reward = reward or {s: 0 for s in self.states}
# self.check_consistency()
def R(self, state):
"""Return a numeric reward for this state."""
return self.reward[state]
def T(self, state, action):
"""Transition model. From a state and an action, return a list
of (probability, result-state) pairs."""
if not self.transitions:
raise ValueError("Transition model is missing")
else:
return self.transitions[state][action]
def actions(self, state):
"""Return a list of actions that can be performed in this state. By default, a
fixed list of actions, except for terminal states. Override this
method if you need to specialize by state."""
if state in self.terminals:
return [None]
else:
return self.actlist
def get_states_from_transitions(self, transitions):
if isinstance(transitions, dict):
s1 = set(transitions.keys())
s2 = set(tr[1] for actions in transitions.values()
for effects in actions.values()
for tr in effects)
return s1.union(s2)
else:
print('Could not retrieve states from transitions')
return None
def check_consistency(self):
# check that all states in transitions are valid
assert set(self.states) == self.get_states_from_transitions(self.transitions)
# check that init is a valid state
assert self.init in self.states
# check reward for each state
assert set(self.reward.keys()) == set(self.states)
# check that all terminals are valid states
assert all(t in self.states for t in self.terminals)
# check that probability distributions for all actions sum to 1
for s1, actions in self.transitions.items():
for a in actions.keys():
s = 0
for o in actions[a]:
s += o[0]
assert abs(s - 1) < 0.001
class GridMDP(MDP):
"""A two-dimensional grid MDP, as in [Figure 17.1]. All you have to do is
specify the grid as a list of lists of rewards; use None for an obstacle
(unreachable state). Also, you should specify the terminal states.
An action is an (x, y) unit vector; e.g. (1, 0) means move east."""
def __init__(self, grid, terminals, init=(0, 0), gamma=.9):
grid.reverse() # because we want row 0 on bottom, not on top
reward = {}
states = set()
self.rows = len(grid)
self.cols = len(grid[0])
self.grid = grid
for x in range(self.cols):
for y in range(self.rows):
if grid[y][x]:
states.add((x, y))
reward[(x, y)] = grid[y][x]
self.states = states
actlist = orientations
transitions = {}
for s in states:
transitions[s] = {}
for a in actlist:
transitions[s][a] = self.calculate_T(s, a)
MDP.__init__(self, init, actlist=actlist,
terminals=terminals, transitions=transitions,
reward=reward, states=states, gamma=gamma)
def calculate_T(self, state, action):
if action:
return [(0.8, self.go(state, action)),
(0.1, self.go(state, turn_right(action))),
(0.1, self.go(state, turn_left(action)))]
else:
return [(0.0, state)]
def T(self, state, action):
return self.transitions[state][action] if action else [(0.0, state)]
def go(self, state, direction):
"""Return the state that results from going in this direction."""
state1 = vector_add(state, direction)
return state1 if state1 in self.states else state
def to_grid(self, mapping):
"""Convert a mapping from (x, y) to v into a [[..., v, ...]] grid."""
return list(reversed([[mapping.get((x, y), None)
for x in range(self.cols)]
for y in range(self.rows)]))
def to_arrows(self, policy):
chars = {(1, 0): '>', (0, 1): '^', (-1, 0): '<', (0, -1): 'v', None: '.'}
return self.to_grid({s: chars[a] for (s, a) in policy.items()})
# ______________________________________________________________________________
""" [Figure 17.1]
A 4x3 grid environment that presents the agent with a sequential decision problem.
"""
sequential_decision_environment = GridMDP([[-0.04, -0.04, -0.04, +1],
[-0.04, None, -0.04, -1],
[-0.04, -0.04, -0.04, -0.04]],
terminals=[(3, 2), (3, 1)])
# ______________________________________________________________________________
def value_iteration(mdp, epsilon=0.001):
"""Solving an MDP by value iteration. [Figure 17.4]"""
U1 = {s: 0 for s in mdp.states}
R, T, gamma = mdp.R, mdp.T, mdp.gamma
while True:
U = U1.copy()
delta = 0
for s in mdp.states:
U1[s] = R(s) + gamma * max(sum(p*U[s1] for (p, s1) in T(s, a))
for a in mdp.actions(s))
delta = max(delta, abs(U1[s] - U[s]))
if delta < epsilon*(1 - gamma)/gamma:
return U
def best_policy(mdp, U):
"""Given an MDP and a utility function U, determine the best policy,
as a mapping from state to action. (Equation 17.4)"""
pi = {}
for s in mdp.states:
pi[s] = argmax(mdp.actions(s), key=lambda a: expected_utility(a, s, U, mdp))
return pi
def expected_utility(a, s, U, mdp):
"""The expected utility of doing a in state s, according to the MDP and U."""
return sum(p*U[s1] for (p, s1) in mdp.T(s, a))
# ______________________________________________________________________________
def policy_iteration(mdp):
"""Solve an MDP by policy iteration [Figure 17.7]"""
U = {s: 0 for s in mdp.states}
pi = {s: random.choice(mdp.actions(s)) for s in mdp.states}
while True:
U = policy_evaluation(pi, U, mdp)
unchanged = True
for s in mdp.states:
a = argmax(mdp.actions(s), key=lambda a: expected_utility(a, s, U, mdp))
if a != pi[s]:
pi[s] = a
unchanged = False
if unchanged:
return pi
def policy_evaluation(pi, U, mdp, k=20):
"""Return an updated utility mapping U from each state in the MDP to its
utility, using an approximation (modified policy iteration)."""
R, T, gamma = mdp.R, mdp.T, mdp.gamma
for i in range(k):
for s in mdp.states:
U[s] = R(s) + gamma*sum(p*U[s1] for (p, s1) in T(s, pi[s]))
return U
__doc__ += """
>>> pi = best_policy(sequential_decision_environment, value_iteration(sequential_decision_environment, .01))
>>> sequential_decision_environment.to_arrows(pi)
[['>', '>', '>', '.'], ['^', None, '^', '.'], ['^', '>', '^', '<']]
>>> from utils import print_table
>>> print_table(sequential_decision_environment.to_arrows(pi))
> > > .
^ None ^ .
^ > ^ <
>>> print_table(sequential_decision_environment.to_arrows(policy_iteration(sequential_decision_environment)))
> > > .
^ None ^ .
^ > ^ <
""" # noqa
"""
s = { 'a' : { 'plan1' : [(0.2, 'a'), (0.3, 'b'), (0.3, 'c'), (0.2, 'd')],
'plan2' : [(0.4, 'a'), (0.15, 'b'), (0.45, 'c')],
'plan3' : [(0.2, 'a'), (0.5, 'b'), (0.3, 'c')],
},
'b' : { 'plan1' : [(0.2, 'a'), (0.6, 'b'), (0.2, 'c'), (0.1, 'd')],
'plan2' : [(0.6, 'a'), (0.2, 'b'), (0.1, 'c'), (0.1, 'd')],
'plan3' : [(0.3, 'a'), (0.3, 'b'), (0.4, 'c')],
},
'c' : { 'plan1' : [(0.3, 'a'), (0.5, 'b'), (0.1, 'c'), (0.1, 'd')],
'plan2' : [(0.5, 'a'), (0.3, 'b'), (0.1, 'c'), (0.1, 'd')],
'plan3' : [(0.1, 'a'), (0.3, 'b'), (0.1, 'c'), (0.5, 'd')],
},
}
"""