-
Notifications
You must be signed in to change notification settings - Fork 2
/
znetworkx.py
265 lines (196 loc) · 6.95 KB
/
znetworkx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from zhdf import new,loaddump,pool,ncores,da,progressbar,h5py
import numpy as np
import pandas as pd
import os,json,re,sys
#import multiprocessing as mp
import networkx as nx
print ''
print ncores
np.warnings.filterwarnings('ignore')
noro2= True
filename = sys.argv[1]
prefix = 'centrality/'+filename.split('.')[0]
a = new(filename)
#ro2 considerations qsub -I -q x-large -X -lselect=7:ncpus=1:mem=50G -l place=vscatter:shared
try:
if noro2: print dsafdsa #intentional fallover
a.spec.RO2
ro2go=True
except:
ro2go=False
ro2list=set([])
if ro2go:
ro2file= re.sub(r'\s|\\t|\\n|\'|,','',str(tuple(open('src/background/mcm331complete.kpp'))))
ro2 = list(set(re.findall(r'ind_([\w\d]+)\b',ro2file)) & set(a.spec.columns))
ro2eq = re.findall(r'}([\w\+=\.\d]+):[\+-\/\(\)\.\w\d\*]*\bRO2\b[\+-\/\(\)\.\w\d\*]*;',ro2file)
ro2list = []
for n,i in enumerate(a.flux.columns):
if i.replace('-->','=') in ro2eq:
ro2list.append(n)
ro2list=set(ro2list)
mcm = list(pd.read_csv('src/background/smiles_mined.csv').name)
if ro2go: mcm.extend(['CO2','RO2'])
cs = [i.split(',')[-1].replace('\n','') for i in tuple(open('carbons.csv'))]
cs.extend(['RO2','CO'])
allspecs = filter(lambda x: x not in ['LAT', 'PRESS', 'TEMP', 'H2O', 'M','NA', 'O1D', 'R','O'],a.spec.columns)
allspecs = filter(lambda x: x in cs,allspecs)
print allspecs
if len(allspecs)<1: sys.exit('no species in allspecs, exiting')
tsps = a.ts[[144*4,144*4+144/2]]# 6 hoursr a.ts[range(0,len(a.ts),4)]
print tsps
if ro2go:
ro2fract = a.spec.loc[tsps,ro2].compute()
ro2val = a.spec.loc[tsps,'RO2'].compute()
def getedge(num,allspecs,prodloss,flux,ro2list,tsps):#,allspecs,a,tsps):
edges = []
print len(num)
print ''
import progressbar,re
import numpy as np
bar = progressbar.ProgressBar()
for j in bar(list(num)):
spec = allspecs[j]
for i in allspecs:
fluxes = set(prodloss[spec]['prod']) & set(prodloss[i]['loss'])
if len(fluxes & ro2list)>0:
fluxes = fluxes & ro2list
arr = 20 + np.log10(np.array(flux.loc[tsps,flux.columns[list(fluxes)]].sum(axis=1)))
edges.append(['RO2',spec,re.sub(r'\s+',' ',str(arr)) ])
if len(fluxes) > 0 :
arr = 20 + np.log10(np.array(flux.loc[tsps,flux.columns[list(fluxes)]].sum(axis=1)))
edges.append([i,spec,re.sub(r'\s+',' ',str(arr)) ])
return edges
def centrality (G,i,num,allspecs):
import networkx as nx
def catch(item,what):
try:
return item[what]
except Exception as e:
return 0
print 'current', num
try:
if num ==0:
pagerank =nx.pagerank(G)
return ['pr%3d'%i,[catch(pagerank,k) for k in allspecs ]]
elif num ==1:
deg =nx.degree_centrality(G)
return ['dg%3d'%i,[catch(deg,k) for k in allspecs]]
elif num ==2:
close =nx.closeness_centrality(G,distance='weight')
return ['cl%3d'%i,[catch(close,k) for k in allspecs]]
elif num ==3:
bet =nx.betweenness_centrality(G,weight='weight')
return ['bt%3d'%i, [catch(bet,k) for k in allspecs]]
elif num ==4:
cent =nx.eigenvector_centrality(G,weight='weight')
return ['ev%3d'%i,[catch(cent,k) for k in allspecs]]
except: return None
return None
def minigraph(edgelist,i,ro2ts):
import numpy as np
import networkx as nx
print len(edgelist)
G = nx.DiGraph()
jval = np.array([float(k[2][i]) for k in edgelist if (len(k[-1])>1 and len(k[-3])>1 and k[2][i]!='')])
#if len(jval)<1: continue
jval = jval[jval>0]
jmin = np.min(jval)
jmax = np.max(jval)-jmin
for j in edgelist:
if j[0] != 'RO2':
jedge = j[2][i]
if jedge not in ['','-inf']:
jedge = float(jedge)
jedge -= jmin
jedge /= jmax
G.add_edge(j[0],j[1],weight=abs(jedge))
else:
jedge = j[2][i]
if jedge not in ['','-inf']:
jedge = float(jedge)
jedge -= jmin
jedge /= jmax
for s in ro2ts.index:
#if ro2ts[s]>1.8e-5:
G.add_edge(s,j[1],weight=abs(jedge)*ro2ts[s])
return G
edgelist=[]
bar = progressbar.ProgressBar()
results = [pool.apply_async(getedge, args=(x,allspecs,a.prodloss,a.flux.compute(),ro2list,tsps)) for x in np.array_split(range(len(allspecs)),ncores)]
[edgelist.extend(p.get()) for p in bar(results)]
print 'edgelist ready'
df = pd.DataFrame(edgelist)
df.columns = ['source','target','flux']
df.flux =[str(i).replace(' -inf',' 0') for i in df.flux]
df.to_csv(prefix+'_link.csv')
print df.head()
df=pd.read_csv(prefix+'_link.csv',index_col=0)
edgelist = np.array(df)
edgelist[:,2] = [re.sub(r'[\[\]]','',i).split(' ') for i in edgelist[:,2]]
nodes = pd.DataFrame(20 +np.log10(np.array(a.spec.loc[tsps,allspecs].compute()).T),index = allspecs, columns = range(len(tsps)))
nodes[nodes<0]=0
nodes/=nodes.max()
####################
for i in xrange(len(tsps)):
if ro2go:
ro2ts = ro2fract.iloc[i]/ro2val.iloc[i]
else:
ro2ts=False
results = [pool.apply_async(minigraph, args=(x,i,ro2ts)) for x in np.array_split(edgelist,ncores)]
counter = 1
G = results[0].get()
for p in results[1:]:
counter +=1
G = nx.compose(G, p.get())
print 'joined', counter
graphspecs=list(G.nodes())
print 'write gexf', i , tsps[i]
nx.write_gexf(G, prefix+"_test%03d.gexf"%i)
results = [pool.apply_async(centrality, args=(G,i,x,allspecs)) for x in list(xrange(5))]
for p in results:
d = p.get()
try:
if len(d)>1:
print d[0]
nodes[d[0]]=d[1]
except:None
print nodes
nodes.to_csv(prefix+'_nodes.csv')
df = pd.DataFrame([['%3d'%i[0],i[1]] for i in enumerate(tsps)])
df.to_csv(prefix+'_datelist.csv')
print 'finif'
pnt=[]
title = []
specs=[]
for i,j in enumerate(nodes.columns):
col=2*i
try:
dt=str(df.iloc[int(j.split(' ')[-1])][1]).split(' ')[1]
except:
dt=str(df.iloc[int(j)][1]).split(' ')[1]
title.append(str(j)+dt)
title.append(str(j)+dt)
a1 = nodes[j].sort_values(ascending=False).head(20)
pnt.append(a1.index )
pnt.append(['%.2f'%k for k in a1.values])
specs.extend(a1.index)
t20 = pd.DataFrame(pnt).T
t20.columns=title
title.sort()
t20=t20[title]
t20.to_csv('t20.csv')
specs=set(specs)
'''
rgroups = set(['NO','NO2','OH','HO2','NO3','O3','H2'])
res=[]
for t in tsps:
r = {}
for s in specs:
try:
pr = set(str(a.ropa(s,top=1,plot=False)['prod'].columns[0]).split('-->')[0].split('+'))
gr = pr & rgroups
r[s]= list(gr)[0]
except Exception as e:
print e
res.append(r)
'''