-
Notifications
You must be signed in to change notification settings - Fork 15
/
AnSchorfheide_Gaussian.mod
163 lines (151 loc) · 6.44 KB
/
AnSchorfheide_Gaussian.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
%/////////////////////////////////////////////////////////////
%//// Model: An and Schorfheide (2007) ////
%//// Author: Willi Mutschler ////
%//// Email: willi@mutschler.eu ////
%//// Version: August 26, 2016 ////
%/////////////////////////////////////////////////////////////
%----------------------------------------------------------------
% 0. Specify options: User Settings (For other settings and defaults see updateOptions.m
%----------------------------------------------------------------
% Order of approximation
@#define orderApp = 2
% Which distribution: 0:for Gaussian, 1:for Student_t
@#define distrib = 0
opt.HOSThirdOrder = 1; % Use third-order statistics, 0: do not include or 1: include
opt.HOSFourthOrder = 1; % User fourth-order statistics, 0: do not include or 1: include
opt.simdata = 1; % compare theoretical statistics with simulated data, 0: no or 1: yes
opt.MCruns = 1000; % Monte Carlo Runs for comparison
opt.numSim = 10000; % Number of observations of simulated data
opt.burnin = 1000; % Initial burnin periods, will be discarded from simulation
opt.antithetic = 1; % 1: Use antithetic shocks and quadratic resampling to reduce Monte Carlo variation
@#if distrib == 1
opt.distrib = 'Student_t'; %multivariate student-t distribution ('Gaussian' is default)
@#endif
%----------------------------------------------------------------
% 1. Declare variables and parameters
%----------------------------------------------------------------
var c dy p y R g z YGR INFL INT;
varexo e_z e_g e_r;
varobs YGR INFL INT;
parameters tau nu kap cyst psi1 psi2 rhor rhog rhoz rrst pist gamst sig_r sig_g sig_z;
@#if distrib == 1
parameters df_studt; % Please always use df_studt for degrees of freedom
@# endif
%----------------------------------------------------------------
% 2. Calibrate parameter values for simulated series (i.e. true values
%----------------------------------------------------------------
@#if distrib == 1
df_studt = 9;
@# endif
tau = 2.0000;
nu = 0.1000;
kap = 0.3300;
cyst = 0.8500;
psi1 = 1.5000;
psi2 = 0.1250;
rhor = 0.7500;
rhog = 0.9500;
rhoz = 0.9000;
rrst = 1.0000;
pist = 3.2000;
gamst = 0.5500;
sig_r = 0.002;
sig_g = 0.006;
sig_z = 0.003;
%----------------------------------------------------------------
% 3. Declare model equations
%----------------------------------------------------------------
model;
% Auxiliary parameters and variables
#pist2 = exp(pist/400);
#rrst2 = exp(rrst/400);
#bet = 1/rrst2;
#phi = tau*(1-nu)/nu/kap/pist2^2;
#gst = 1/cyst;
#cst = (1-nu)^(1/tau);
#yst = cst*gst;
% Euler equation, eq. (21)
1 = exp(-tau*c(+1)+tau*c+R-z(+1)-p(+1));
% Phillips curve, eq. (22)
(1-nu)/nu/phi/(pist2^2)*(exp(tau*c)-1) = (exp(p)-1)*((1-1/2/nu)*exp(p)+1/2/nu) - bet*(exp(p(+1))-1)*exp(-tau*c(+1)+tau*c+dy(+1)+p(+1));
% Equilibrium condition, eq. (23)
exp(c-y) = exp(-g) - phi*pist2^2*gst/2*(exp(p)-1)^2;
% Taylor Rule, eq. (24)
R = rhor*R(-1) + (1-rhor)*psi1*p + (1-rhor)*psi2*(y-g) + e_r;
% Fiscal rule, eq. (25)
g = rhog*g(-1) + e_g;
% Evolution of technology, eq (26)
z = rhoz*z(-1) + e_z;
% Auxiliary equation for output Growth
dy = y - y(-1);
% Measurement equations, eq. (38)
YGR = gamst+100*(dy+z);
INFL = pist+400*p;
INT = pist+rrst+4*gamst+400*R;
end;
%----------------------------------------------------------------
% 4. Specify variance of shock processes depending on distribution
%----------------------------------------------------------------
shocks;
@#if distrib == 1
% Student-t distribution
var e_r = df_studt/(df_studt-2)*sig_r^2;
var e_g = df_studt/(df_studt-2)*sig_g^2;
var e_z = df_studt/(df_studt-2)*sig_z^2;
@#else
% Gaussian distribution
var e_r = sig_r^2;
var e_g = sig_g^2;
var e_z = sig_z^2;
@#endif
end;
%----------------------------------------------------------------
% 5. Specify steady-state (either steady_state_model or initval)
%----------------------------------------------------------------
steady_state_model;
y = 0;
R = 0;
g = 0;
z = 0;
c = 0;
dy = 0;
p = 0;
YGR = gamst;
INFL = pist;
INT = pist + rrst + 4*gamst;
end;
%----------------------------------------------------------------
% 6. Specify parameters for GMM estimation
% Syntax: parameter, initial value, lower bound, upper bound, unifrom_pdf,,,,,tr
% Note that uniform_pdf has no meaning, we simply abuse Dynare's syntax to enable
% parameter transformations (if selected as an option: opt.transpar = 1, default is opt.transpar = 0)
% tr is parameter transformation type
% 0: no transformation needed
% 1: [a,b] -> [-1,1] -> [-inf,inf] by z/sqrt(1-z^2)
% 2: [0,inf] -> [-inf,inf] by b + ln(z-a);
% with a: lower bound and b: upper bound:
%----------------------------------------------------------------
estimated_params;
%parameter, initial value, lower bound, upper bound, unifrom_pdf,,,,, tr
% tau, 2, 1e-5, 10, uniform_pdf,,,,, 2;
nu, 0.1, 1e-5, 0.99999, uniform_pdf,,,,, 1;
kap, 0.3, 1e-5, 10, uniform_pdf,,,,, 2;
cyst, 0.85, 1e-5, 0.99999, uniform_pdf,,,,, 1;
psi1, 1, 0.1, 10, uniform_pdf,,,,, 2;
% psi2, 0.5, 1e-5, 10, uniform_pdf,,,,, 2;
rhor, 0.5, 1e-5, 0.99999, uniform_pdf,,,,, 1;
rhog, 0.8, 1e-5, 0.99999, uniform_pdf,,,,, 1;
rhoz, 0.66, 1e-5, 0.99999, uniform_pdf,,,,, 1;
% rrst, 0.8, 1e-5, 10, uniform_pdf,,,,, 2;
% pist, 4, 1e-5, 20, uniform_pdf,,,,, 2;
% gamst, 0.4, -5, 5, uniform_pdf,,,,, 0;
% sig_r, 0.003, 1e-8, 5, uniform_pdf,,,,,2;
% sig_g, 0.004, 1e-8, 5, uniform_pdf,,,,,2;
% sig_z, 0.004, 1e-8, 5, uniform_pdf,,,,,2;
end;
%----------------------------------------------------------------
% 7. Computations
%----------------------------------------------------------------
steady; check;
stoch_simul(order=@{orderApp},pruning,noprint,nomoments,irf=0);
DispHOS(opt);