-
Notifications
You must be signed in to change notification settings - Fork 5
/
dynSIS.py
164 lines (140 loc) · 7.21 KB
/
dynSIS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python
# ! ## File: dynSIS.py
# ! Module: use networkx graphs!
# ! ## See README.md for more information and use
# !-----------------------------------------------------------------------------
# ! SIS epidemic model algorithm based on the article
# ! Computer Physics Communications 219C (2017) pp. 303-312
# ! "Optimized Gillespie algorithms for the simulation of
# ! Markovian epidemic processes on large and heterogeneous networks"
# ! Copyright (C) 2017 Wesley Cota, Silvio C. Ferreira
# !
# ! Please cite the above cited paper (available at <http://dx.doi.org/10.1016/j.cpc.2017.06.007> )
# ! as reference to our code.
# !
# ! This program is free software: you can redistribute it and/or modify
# ! it under the terms of the GNU General Public License as published by
# ! the Free Software Foundation, either version 3 of the License, or
# ! (at your option) any later version.
# !
# ! This program is distributed in the hope that it will be useful,
# ! but WITHOUT ANY WARRANTY; without even the implied warranty of
# ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# ! GNU General Public License for more details.
# !
# ! You should have received a copy of the GNU General Public License
# ! along with this program. If not, see <http://www.gnu.org/licenses/>.
# !-----------------------------------------------------------------------------
# ! Author : Wesley Cota
# ! Email : wesley@wcota.me
# ! Date : 27 Mar 2017
# ! Version : 1.0
# !-----------------------------------------------------------------------------
# ! See README.md for more details
# ! This code is available at <https://github.com/wcota/dynSIS-networkx>
# ! For performance, see <https://github.com/wcota/dynSIS> (Fortran implementation)
# ! For pure Python, see <https://github.com/wcota/dynSIS-py>
import numpy as np
from math import log
print( '################################################################################',
'######### Optimized Gillespie algorithms for the simulation of Markovian ######',
'####### epidemic processes on large and heterogeneous networks: SIS-OGA. #######',
'##============ Copyright (C) 2017 Wesley Cota, Silvio C. Ferreira ============##',
'##===== Paper available at <http://dx.doi.org/10.1016/j.cpc.2017.06.007> =====##',
'##======= The codes are available at <https://github.com/wcota/dynSIS> =======##',
'##======== Please cite the above cited paper as reference to our code ========##',
'##=== This code is under GNU General Public License. Please see README.md. ===##',
'################################################################################',
'',
sep='\n')
def dyn_run(nw, fnOutput, dynp_sam, dynp_lb, dynp_tmax, dynp_pINI):
net_N = nw.number_of_nodes()
net_kmax = max(nw.degree().values()) # Used in the rejection probability
avg_rho = np.zeros(dynp_tmax, np.float64) # Average for rho at times t, averaged
avg_t = np.zeros(dynp_tmax, np.float64)
avg_sam = np.zeros(dynp_tmax, np.int) # number of samples for each time t
avg_samSurv = np.zeros(dynp_tmax, np.int) # and of survivng ones
dyn_VI = [None]*net_N # list V^I. Any node type is allowed
dyn_sig = { i : 0 for i in nw.nodes()} # sigma
print('\nOk! Doing the samples...')
dyn_dt_pos_max = 0
for sam in range(1,dynp_sam+1):
print('\nSample #', sam)
print('|| (random) Initial condition...')
dyn_sig = dict.fromkeys(dyn_sig, 0)
dyn_VI = [None]*net_N
dyn_NI = 0
dyn_Nk = 0
# Sort vertices and apply the initial condition
for ver in np.random.permutation(nw.nodes()):
dyn_VI[dyn_NI] = ver
dyn_NI += 1
dyn_sig[ver]= 1
dyn_Nk += nw.degree(ver)
if dyn_NI == int(net_N*dynp_pINI):
break
# Run dynamics
dyn_t = 0
dyn_dt = 0.0
dyn_dt_pos = 1
print('|| Running dynamics...')
while dyn_t <= dynp_tmax and dyn_NI > 0:
# SIS-OGA ALGORITHM
# Calculate the total rate
dyn_R = (dyn_NI + 1.0*dynp_lb * dyn_Nk)
# Select the time step
rnd = max(np.random.uniform(),1e-12) # Avoid u = 0
dyn_dt = -log(rnd) / dyn_R
# Update the time
dyn_t += dyn_dt
# Probability m to heal
dyn_m = 1.0*dyn_NI / dyn_R
if np.random.uniform() < dyn_m: # Select a random occupied vertex and heal.
pos_inf = np.random.randint(0,dyn_NI)
ver = dyn_VI[pos_inf]
# Then, heal it
dyn_sig[ver] = 0
dyn_Nk -= nw.degree(ver)
dyn_NI -= 1
dyn_VI[pos_inf] = dyn_VI[dyn_NI]
else: # If not, try to infect: w = 1 - m
# Select the infected vertex i with prob. proportional to k_i
while True:
pos_inf = np.random.randint(0,dyn_NI)
ver = dyn_VI[pos_inf]
if np.random.uniform() < 1.0*nw.degree(ver) / (1.0*net_kmax):
break
# Select one of its neighbors
ver = np.random.choice(nw.neighbors(ver))
if dyn_sig[ver] == 0: # if not a phantom process, infect
dyn_sig[ver] = 1
dyn_Nk += nw.degree(ver)
dyn_VI[dyn_NI] = ver # Add one element to list
dyn_NI += 1 # Increase by 1 the list
# Try to save the dynamics by time unit
while (dyn_t >= dyn_dt_pos): # Save data
avg_rho[dyn_dt_pos - 1] += 1.0*dyn_NI/net_N
avg_t[dyn_dt_pos - 1] += dyn_t
avg_sam[dyn_dt_pos - 1] += 1
if dyn_NI != 0:
avg_samSurv[dyn_dt_pos - 1] += 1
dyn_dt_pos_max = max(dyn_dt_pos,dyn_dt_pos_max) # The maximum t with non-null rho
dyn_dt_pos += 1
# if a absorbing state is reached, exit
# Write output file
flOutput = open(fnOutput, 'wt')
print( '## ***** Algorithm used: Optimized Gillespie Algorithm for SIS (SIS-OGA, NetworkX) *****',
'#@ Number of nodes: '+str(net_N),
'#@ Number of edges: '+str(2*nw.number_of_edges()),
'#@ Samples: '+str(dynp_sam),
'#! Infection rate (lambda): '+str(dynp_lb),
'#! Maximum time steps: '+str(dynp_tmax),
'#! Fraction of infected vertices (initial condition): '+str(dynp_pINI),
sep='\n',
file=flOutput)
for dt_pos in range(0,dyn_dt_pos_max):
print(1.0*avg_t[dt_pos]/avg_sam[dt_pos], 1.0*avg_rho[dt_pos]/(1.0*sam),
file=flOutput)
# If you use /avg_samSurv[dt_pos] instead of /(1.0*sam) to write avg_rho (2nd column), you have
# QS analysis :)
flOutput.close()