forked from fsn1995/Drought-Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSPEI viewer.js
215 lines (182 loc) · 9.25 KB
/
SPEI viewer.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
////////////////////////////////////////////////////////////////////////////
// SPEI viewer //
// This script computes the differences of the annual average SPEI. //
// Positive SPEI values are masked as it focuses on the drought period. //
// The difference maps show the annual difference of drought. Each layer //
// represents the difference between the annual average SPEI in that year //
// and the previous years. //
//------------------------------------------------------------------------//
// Optionally, one may export the annual difference maps to Goole drive. //
// You can also define a point/region of interest by uploading a shapefile//
// or draw it by hand in GEE. The monthly evolution of SPEI will be displ //
// -ayed. Just like SPEI vs NDVI time series analysis //
////////////////////////////////////////////////////////////////////////////
//-------------------------------Preparation------------------------------//
// study time range
var year_start = 2001; // MODIS NDVI 2000-02-18T00:00:00 - Present
var year_end = 2018;
var month_start = 1;
var month_end = 12;
var date_start = ee.Date.fromYMD(year_start, 1, 1);
var date_end = ee.Date.fromYMD(year_end, 12, 31);
var years = ee.List.sequence(year_start, year_end);// time range of years
// define your study area and name it as roi. e.g. draw it by hand tool
// var months = ee.List.sequence(month_start, month_end);// time range of months
// change the month lag here, e.g. no lag is 0,-1 is one month lag,-2 is 2 month lag
var lagflag = 0;
var spei1m = ee.ImageCollection("users/fsn1995/spei1m_noah");
var spei2m = ee.ImageCollection("users/fsn1995/spei2m_noah");
var spei3m = ee.ImageCollection("users/fsn1995/spei3m_noah");
var spei4m = ee.ImageCollection("users/fsn1995/spei4m_noah");
var spei5m = ee.ImageCollection("users/fsn1995/spei5m_noah");
var spei6m = ee.ImageCollection("users/fsn1995/spei6m_noah");
var spei7m = ee.ImageCollection("users/fsn1995/spei7m_noah");
var spei8m = ee.ImageCollection("users/fsn1995/spei8m_noah");
var spei9m = ee.ImageCollection("users/fsn1995/spei9m_noah");
var spei10m = ee.ImageCollection("users/fsn1995/spei10m_noah");
var spei11m = ee.ImageCollection("users/fsn1995/spei11m_noah");
var spei12m = ee.ImageCollection("users/fsn1995/spei12m_noah");
// select the time scale of spei here
var spei = spei11m.filterDate(date_start, date_end)
.map(function(image) {
var speiMask = image.lte(0);
return image.updateMask(speiMask);
}); // mask spei > 0
var ndvi = ee.ImageCollection('MODIS/006/MOD13A2')
.filterDate(date_start, date_end)
.select('NDVI');
//-------------------------Trend identification---------------------------//
// kendall's test, P-value disabled by GEE
// var speiTrend = spei.reduce(ee.Reducer.kendallsCorrelation());
// var speiTrendTau = {min: -1, max: 1, palette: ['red','white', 'green']};
// // var speiTrendP = {min: 0, max: 1, palette: ['red','white', 'green']};
// Map.addLayer(speiTrend.select('b1_tau'), speiTrendTau, 'speiTrendTau');
// // Map.addLayer(speiTrend.select('b1_p-value'), speiTrendP, 'speiTrendP');
// var ndviTrend = ndvi.reduce(ee.Reducer.kendallsCorrelation());
// Map.addLayer(ndviTrend.select('NDVI_tau'), speiTrendTau, 'ndviTrendTau');
// // Map.addLayer(ndviTrend.select('NDVI_p-value'), speiTrendP, 'speiTrendP');
// ee.ImageCollection.formaTrend
// var speiTrendTau = {min: -1, max: 1, palette: ['red','white', 'green']};
// var speiTrend = spei.formaTrend();
// Map.addLayer(speiTrend.select('long-trend'), speiTrendTau, 'speiTrend');
// Map.addLayer(speiTrend.select('long-tstat'), speiTrendTau, 'speiTstat');
// var ndviTrend = ndvi.formaTrend();
// Map.addLayer(ndviTrend.select('long-trend'), speiTrendTau, 'ndviTrend');
// Map.addLayer(ndviTrend.select('long-tstat'), speiTrendTau, 'ndviTstat');
// linear trend
var speiLinear = spei.map(function(image) {
return image.addBands(image.metadata('system:time_start').divide(1e18));
// Scale milliseconds by a large constant to avoid very small slopes
// in the linear regression output. code from GEE guides
});
var speiLinear = speiLinear.select(['system:time_start', 'b1']).reduce(
ee.Reducer.linearFit());
Export.image.toDrive({
image: speiLinear.select('scale'),
folder: 'speiDiff',
description: 'speiLinearScale',
scale: 10000,
// region: roi // If not specified, the region defaults to the viewport at the time of invocation
});
Export.image.toDrive({
image: speiLinear.select('offset'),
folder: 'speiDiff',
description: 'speiLinearOffset',
scale: 10000,
// region: roi // If not specified, the region defaults to the viewport at the time of invocation
});
Map.addLayer(speiLinear,
{min: 0, max: [-0.9, 8e-5, 1], bands: ['scale', 'offset', 'scale']}, 'fit');
// annual spei
var speiYear = ee.ImageCollection.fromImages(
years.map(function (y) {
var indice = spei.select('b1')
.filter(ee.Filter.calendarRange(y, y, 'year'))
.mean()
.rename('speiy');
return indice.set('year', y)
.set('system:time_start', ee.Date.fromYMD(y, 1, 1));
}).flatten()
);
var speiYear1 = ee.ImageCollection.fromImages(
years.map(function (y) {
var indice = spei.select('b1')
.filter(ee.Filter.calendarRange(y, y, 'year'))
.mean()
.rename('speiy1');
return indice.set('year', y)
.set('system:time_start', ee.Date.fromYMD(y, 1, 1));
}).flatten()
);
var addLag1y = function(image) {
var lagy = ee.Date(image.get('system:time_start')).advance(-1,'year');
return image.set({'lagy': lagy});
};
var addLag0y = function(image) {
var lagy = ee.Date(image.get('system:time_start')).advance(0,'year');
return image.set({'lagy': lagy});
};
var spei0 = speiYear.select('speiy').map(addLag0y);
var spei1 = speiYear1.select('speiy1').map(addLag1y);
// print(spei0);
// print(spei1);
var lagFilter = ee.Filter.equals({
leftField: 'lagy',
rightField: 'lagy',
});
var lagLink = ee.Join.saveFirst({
matchKey: 'match',
});
var speiAll = ee.ImageCollection(lagLink.apply(spei0.select('speiy'),
spei1.select('speiy1'),lagFilter))
.map(function(image) {
return image.addBands(image.get('match'));
});
// Map.addLayer(speiAll.select('speiy').filterDate('2017-01-01'));
print(speiAll);
// spei differences
var speiDiff = speiAll.map(function(image) {
return image.addBands(
image.expression('a1 - b1', {
a1: image.select('speiy1'),
b1: image.select('speiy')
}).rename('speiDiff'));
});
// var mapPara = {min: -1, max: 1, palette: ['red','white', 'green']};
// Map.addLayer(speiDiff, mapPara);
// // experiment with linear fit
// var spei = spei.map(function(image) {
// return image.addBands(image.metadata('system:time_start').divide(1e18));
// // Scale milliseconds by a large constant to avoid very small slopes
// // in the linear regression output. code from GEE guides
// });
var mapPara = {min: -1, max: 1, palette: ['red','white', 'green']};
// Map.addLayer(speiDiff.select('speiDiff').filterDate('2001-01-01'), mapPara, '2001');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2002-01-01'), mapPara, '2002');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2003-01-01'), mapPara, '2003');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2004-01-01'), mapPara, '2004');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2005-01-01'), mapPara, '2005');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2006-01-01'), mapPara, '2006');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2007-01-01'), mapPara, '2007');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2008-01-01'), mapPara, '2008');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2009-01-01'), mapPara, '2009');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2010-01-01'), mapPara, '2010');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2011-01-01'), mapPara, '2011');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2012-01-01'), mapPara, '2012');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2013-01-01'), mapPara, '2013');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2014-01-01'), mapPara, '2014');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2015-01-01'), mapPara, '2015');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2016-01-01'), mapPara, '2016');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2017-01-01'), mapPara, '2017');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2018-01-01'), mapPara, '2018');
//------------------------------------------------------------------------//
// uncomment the following lines for optional experiment //
//------------------------------------------------------------------------//
// Export.image.toDrive({
// image: speiDiff.select('speiDiff'),
// folder: 'speiDiff',
// description: 'Differences of annual SPEI',
// scale: 10000,
// // region: roi // If not specified, the region defaults to the viewport at the time of invocation
// });
// print(ui.Chart.image.seriesByRegion(spei.select('b1'), roi, ee.Reducer.mean(), 'Montly SPEI', 1000));