-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcoupling_layers.py
100 lines (80 loc) · 4.15 KB
/
coupling_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""This Code is based on the FrEIA Framework, source: https://github.com/VLL-HD/FrEIA.
Defines the coupling blocks for the normalizing flow.
"""
from typing import Callable, List, Optional, Tuple, Union
import torch
from FrEIA.modules.coupling_layers import _BaseCouplingBlock
class CouplingBlock(_BaseCouplingBlock):
"""Coupling Block following the GLOW design.
Note, this is only the coupling
part itself, and does not include ActNorm, invertible 1x1 convolutions, etc.
See AllInOneBlock for a block combining these functions at once.
The only difference to the RNVPCouplingBlock coupling blocks
is that it uses a single subnetwork to jointly predict [s_i, t_i], instead of two separate
subnetworks. This reduces computational cost and speeds up learning.
"""
def __init__(
self,
dims_in: Union[int, Tuple[int], List[int]],
dims_c: Optional[Union[int, Tuple[int], List[int]]] = None,
subnet_constructor: Callable = lambda: None,
clamp: float = 2.0,
clamp_activation: Union[str, Callable] = "ATAN",
) -> None:
"""Additional args in docstring of base class.
Args:
dims_in: The input dimensions.
dims_c: The coupling dimensions.
subnet_constructor: function or class, with signature
constructor(dims_in, dims_out). The result should be a torch
nn.Module, that takes dims_in input channels, and dims_out output
channels. See tutorial for examples. Two of these subnetworks will be
initialized in the block.
clamp: Soft clamping for the multiplicative component. The
amplification or attenuation of each input dimension can be at most
exp(±clamp).
clamp_activation: Function to perform the clamping. String values
"ATAN", "TANH", and "SIGMOID" are recognized, or a function of
object can be passed. TANH behaves like the original realNVP paper.
A custom function should take tensors and map -inf to -1 and +inf to +1.
"""
dimensions_c = [] if dims_c is None else dims_c
super().__init__(dims_in, dimensions_c, clamp, clamp_activation)
self.subnet1 = subnet_constructor(self.split_len1 + self.condition_length, self.split_len2 * 2)
self.subnet2 = subnet_constructor(self.split_len2 + self.condition_length, self.split_len1 * 2)
def _coupling1(self, x1: torch.Tensor, u2: torch.Tensor, rev: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
"""Performs first coupling.
Args:
x1: The inputs i.e. 'x-side' when rev is False, 'z-side' when rev is True.
u2: _description_
rev: Perform reverse computation if rev is True. Defaults to False.
Returns:
The results of the first coupling.
"""
affine_2 = self.subnet2(u2)
scale_2, translation_2 = affine_2[:, : self.split_len1], affine_2[:, self.split_len1 :]
scale_2 = self.clamp * self.f_clamp(scale_2)
jacobian_1 = scale_2
if rev:
outputs_1 = (x1 - translation_2) * torch.exp(-scale_2)
return outputs_1, -jacobian_1
outputs_1 = torch.exp(scale_2) * x1 + translation_2
return outputs_1, jacobian_1
def _coupling2(self, x2: torch.Tensor, u1: torch.Tensor, rev: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
"""Performs the second coupling.
Args:
x2: The inputs i.e. 'x-side' when rev is False, 'z-side' when rev is True.
u1: _description_
rev: Perform reverse computation if rev is True. Defaults to False.
Returns:
The results of the second coupling.
"""
affine_1 = self.subnet1(u1)
scale_1, transaltion_1 = affine_1[:, : self.split_len2], affine_1[:, self.split_len2 :]
scale_1 = self.clamp * self.f_clamp(scale_1)
jacobian_2 = scale_1
if rev:
outputs_2 = (x2 - transaltion_1) * torch.exp(-scale_1)
return outputs_2, -jacobian_2
outputs_2 = torch.exp(scale_1) * x2 + transaltion_1
return outputs_2, jacobian_2