forked from BigDaMa/reds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
124 lines (109 loc) · 5.02 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
########################################
# Dataset
# Mohammad Mahdavi
# moh.mahdavi.l@gmail.com
# October 2017
# Big Data Management Group
# TU Berlin
# All Rights Reserved
########################################
########################################
import sys
import itertools
import pandas
########################################
########################################
class Dataset:
"""
The dataset class.
"""
def __init__(self, dataset_dictionary):
"""
The constructor creates a dataset.
"""
self.name = dataset_dictionary["name"]
self.dataframe = self.read_csv_dataset(dataset_dictionary["path"])
if "clean_path" in dataset_dictionary:
self.clean_dataframe = self.read_csv_dataset(dataset_dictionary["clean_path"])
if self.dataframe.shape != self.clean_dataframe.shape:
sys.stderr.write("Ground truth is not in the equal size to the dataset!\n")
self.actual_errors_dictionary = self.get_actual_errors_dictionary()
if "repaired_path" in dataset_dictionary:
self.repaired_dataframe = self.read_csv_dataset(dataset_dictionary["repaired_path"])
if self.dataframe.shape != self.repaired_dataframe.shape:
sys.stderr.write("Repaired dataset is not in the equal size to the dataset!\n")
self.repairs_dictionary = self.get_repairs_dictionary()
def read_csv_dataset(self, dataset_path):
"""
This method reads a dataset from a csv file path.
"""
dataset_dataframe = pandas.read_csv(dataset_path, sep=",", header="infer", encoding="utf-8", dtype=str,
keep_default_na=False, low_memory=False).apply(lambda x: x.str.strip())
return dataset_dataframe
def write_csv_dataset(self, dataset_path, dataframe):
"""
This method writes a dataset to a csv file path.
"""
dataframe.to_csv(dataset_path, sep=",", header=True, index=False, encoding="utf-8")
def get_actual_errors_dictionary(self):
"""
This method compares the clean and dirty versions of a dataset.
"""
return {(i, j): self.clean_dataframe.iloc[i, j]
for (i, j) in itertools.product(range(self.dataframe.shape[0]), range(self.dataframe.shape[1]))
if self.dataframe.iloc[i, j] != self.clean_dataframe.iloc[i, j]}
def create_repaired_dataset(self, correction_dictionary):
"""
This method takes the dictionary of corrected values and creates the repaired dataset.
"""
self.repaired_dataframe = self.dataframe.copy()
for cell in correction_dictionary:
self.repaired_dataframe.iloc[cell] = correction_dictionary[cell]
def get_repairs_dictionary(self):
"""
This method compares the repaired and dirty versions of a dataset.
"""
return {(i, j): self.repaired_dataframe.iloc[i, j]
for (i, j) in itertools.product(range(self.dataframe.shape[0]), range(self.dataframe.shape[1]))
if self.dataframe.iloc[i, j] != self.repaired_dataframe.iloc[i, j]}
def get_data_quality(self):
"""
This method calculates data quality of a dataset.
"""
return 1.0 - float(len(self.actual_errors_dictionary)) / (self.dataframe.shape[0] * self.dataframe.shape[1])
def evaluate_data_cleaning(self, correction_dictionary, sampled_rows_dictionary=False):
"""
This method evaluates data cleaning process.
"""
actual_errors = dict(self.actual_errors_dictionary)
if sampled_rows_dictionary:
actual_errors = {(i, j): self.actual_errors_dictionary[(i, j)]
for (i, j) in self.actual_errors_dictionary if i in sampled_rows_dictionary}
ed_tp = 0.0
ec_tp = 0.0
output_size = 0.0
for cell in correction_dictionary:
if (not sampled_rows_dictionary) or (cell[0] in sampled_rows_dictionary):
output_size += 1
if cell in actual_errors:
ed_tp += 1.0
if correction_dictionary[cell] == actual_errors[cell]:
ec_tp += 1.0
ed_p = 0.0 if output_size == 0 else ed_tp / output_size
ed_r = 0.0 if len(actual_errors) == 0 else ed_tp / len(actual_errors)
ed_f = 0.0 if (ed_p + ed_r) == 0.0 else (2 * ed_p * ed_r) / (ed_p + ed_r)
ec_p = 0.0 if output_size == 0 else ec_tp / output_size
ec_r = 0.0 if len(actual_errors) == 0 else ec_tp / len(actual_errors)
ec_f = 0.0 if (ec_p + ec_r) == 0.0 else (2 * ec_p * ec_r) / (ec_p + ec_r)
return [ed_p, ed_r, ed_f, ec_p, ec_r, ec_f]
########################################
########################################
if __name__ == "__main__":
dataset_dictionary = {
"name": "toy",
"path": "datasets/dirty.csv",
"clean_path": "datasets/clean.csv"
}
d = Dataset(dataset_dictionary)
print d.get_data_quality()
########################################