forked from project-sunbird/jugalbandi-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
457 lines (393 loc) · 18.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import os.path
from enum import Enum
from typing import List
from cachetools import TTLCache
import secrets
from fastapi import Depends, FastAPI, UploadFile, File, HTTPException, Form
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from starlette.status import HTTP_401_UNAUTHORIZED
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from database_functions import *
from io_processing import *
from query_with_gptindex import *
from query_with_langchain import *
from cloud_storage import *
import uuid
import shutil
from zipfile import ZipFile
from query_with_tfidf import querying_with_tfidf
from fastapi.responses import Response
from sse_starlette.sse import EventSourceResponse
import time
api_description = """
## Generate context based questions from an extensive collection of documents/ information
You will be able to:
* **Upload Information**:
This API allows you to upload domain specific document/s and generate a unique identifier(UUID) for each of them
* **Question generation**:
This API allows you to generate multiple choice questions (MCQs), along with their right answers, in a CSV format for the given UUID. This CSV can be downloaded to carry out review/additional refinement/updates as needed.
"""
app = FastAPI(title="Generate context based Questions (MCQ)",
# docs_url=None, # Swagger UI: disable it by setting docs_url=None
redoc_url=None, # ReDoc : disable it by setting docs_url=None
swagger_ui_parameters={"defaultModelsExpandDepth": -1},
description=api_description,
version="1.0.0"
)
ttl = int(os.environ.get("CACHE_TTL", 86400))
cache = TTLCache(maxsize=100, ttl=ttl)
security = HTTPBasic()
db_engine = None
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.on_event("startup")
async def startup_event():
logger.info('Invoking startup_event')
load_dotenv()
global db_engine # Declare db_engine as global
db_engine = await create_engine()
logger.info('startup_event : Engine created')
@app.on_event("shutdown")
async def shutdown_event():
logger.info('Invoking shutdown_event')
load_dotenv()
await db_engine.close()
logger.info('shutdown_event : Engine closed')
class FeedbackType(str, Enum):
up = "up"
down = "down"
class CSVResponse(Response):
media_type = "text/csv"
class Response(BaseModel):
query: str = None
answer: str = None
source_text: str = None
class ResponseForAudio(BaseModel):
query: str = None
query_in_english: str = None
answer: str = None
answer_in_english: str = None
audio_output_url: str = None
source_text: str = None
class DropdownOutputFormat(str, Enum):
TEXT = "Text"
VOICE = "Voice"
class DropDownInputLanguage(str, Enum):
en = "English"
hi = "Hindi"
kn = "Kannada"
te = "Telugu"
def get_current_username(
credentials: HTTPBasicCredentials = Depends(security)
):
load_dotenv()
current_username_bytes = credentials.username.encode("utf8")
correct_username_bytes = bytes(os.environ.get("USERNAME"), 'utf-8')
is_correct_username = secrets.compare_digest(
current_username_bytes, correct_username_bytes
)
current_password_bytes = credentials.password.encode("utf8")
correct_password_bytes = bytes(os.environ.get("PASSWORD"), 'utf-8')
is_correct_password = secrets.compare_digest(
current_password_bytes, correct_password_bytes
)
if not (is_correct_username and is_correct_password):
raise HTTPException(
status_code=HTTP_401_UNAUTHORIZED,
detail="Incorrect username or password",
headers={"WWW-Authenticate": "Basic"},
)
return credentials.username
@app.get("/", include_in_schema=False)
async def root():
return {"message": "Welcome to Jugalbandi API"}
@app.get("/query-with-gptindex", tags=["Q&A over Document Store"], include_in_schema=False)
async def query_using_gptindex(uuid_number: str, query_string: str, username: str = Depends(get_current_username)) -> Response:
# lowercase_query_string = query_string.lower()
# if lowercase_query_string in cache:
# print("Value in cache", lowercase_query_string)
# return cache[lowercase_query_string]
# else:
# print("Value not in cache", lowercase_query_string)
load_dotenv()
answer, source_text, error_message, status_code = querying_with_gptindex(uuid_number, query_string)
engine = await create_engine()
await insert_qa_logs(engine=engine, model_name="gpt-index", uuid_number=uuid_number, query=query_string,
paraphrased_query=None, response=answer, source_text=source_text, error_message=error_message)
await engine.close()
if status_code != 200:
print("Error status code", status_code)
print("Error message", error_message)
raise HTTPException(status_code=status_code, detail=error_message)
response = Response()
response.query = query_string
response.answer = answer
response.source_text = source_text
# cache[lowercase_query_string] = response
return response
@app.get("/query-with-langchain", tags=["Q&A over Document Store"], include_in_schema=False)
async def query_using_langchain(uuid_number: str, query_string: str, username: str = Depends(get_current_username)) -> Response:
lowercase_query_string = query_string.lower() + uuid_number
if lowercase_query_string in cache:
print("Value in cache", lowercase_query_string)
return cache[lowercase_query_string]
else:
print("Value not in cache", lowercase_query_string)
load_dotenv()
answer, source_text, paraphrased_query, error_message, status_code = querying_with_langchain(uuid_number,
query_string)
print(engine, "langchain", uuid_number, query_string, paraphrased_query, answer, source_text,)
if status_code != 200:
raise HTTPException(status_code=status_code, detail=error_message)
response = Response()
response.query = query_string
response.answer = answer
response.source_text = source_text
cache[lowercase_query_string] = response
return response
@app.post("/upload-files", tags=["API for uploading documents - TXT / PDF "])
async def upload_files(description: str, files: List[UploadFile] = File(...), username: str = Depends(get_current_username)):
load_dotenv()
uuid_number = str(uuid.uuid1())
os.makedirs(uuid_number)
files_list = []
for file in files:
try:
contents = file.file.read()
with open(file.filename, 'wb') as f:
f.write(contents)
except OSError:
return "There was an error uploading the file(s)"
finally:
if ".zip" in file.filename:
os.makedirs("temp_archive")
with ZipFile(file.filename, 'r') as zip_ref:
zip_ref.extractall("temp_archive")
bad_zip_folder = "temp_archive/__MACOSX"
if os.path.exists(bad_zip_folder):
shutil.rmtree(bad_zip_folder)
archived_files = os.listdir("temp_archive")
files_list.extend(archived_files)
for archived_file in archived_files:
shutil.move("temp_archive/" + archived_file, archived_file)
upload_file(uuid_number, archived_file)
shutil.move(archived_file, uuid_number + "/" + archived_file)
shutil.rmtree("temp_archive")
os.remove(file.filename)
else:
files_list.append(file.filename)
upload_file(uuid_number, file.filename)
file.file.close()
shutil.move(file.filename, uuid_number + "/" + file.filename)
# error_message, status_code = gpt_indexing(uuid_number)
# if status_code == 200:
error_message, status_code = langchain_indexing(uuid_number)
# engine = await create_engine()
await insert_document_store_logs(engine=db_engine, description=description, uuid_number=uuid_number,
documents_list=files_list, error_message=error_message)
# await engine.close()
if status_code != 200:
raise HTTPException(status_code=status_code, detail=error_message)
index_files = ["index.faiss", "index.pkl"] # original: ["index.json", "index.faiss", "index.pkl"]
for index_file in index_files:
upload_file(uuid_number, index_file)
os.remove(index_file)
shutil.rmtree(uuid_number)
return {"uuid_number": str(uuid_number), "message": "Files uploading is successful"}
@app.get("/query-using-voice", tags=["Q&A over Document Store"], include_in_schema=False)
async def query_with_voice_input(uuid_number: str, input_language: DropDownInputLanguage,
output_format: DropdownOutputFormat, query_text: str = "",
audio_url: str = "", username: str = Depends(get_current_username)) -> ResponseForAudio:
load_dotenv()
language = input_language.name
output_medium = output_format.name
is_audio = False
text = None
paraphrased_query = None
regional_answer = None
answer = None
audio_output_url = None
source_text = None
if query_text == "" and audio_url == "":
query_text = None
error_message = "Either 'Query Text' or 'Audio URL' should be present"
status_code = 422
else:
if query_text != "":
text, error_message = process_incoming_text(query_text, language)
if output_format.name == "VOICE":
is_audio = True
else:
query_text, text, error_message = process_incoming_voice(audio_url, language)
output_medium = "VOICE"
is_audio = True
if text is not None:
print(text)
answer, source_text, paraphrased_query, error_message, status_code = querying_with_langchain_gpt4(uuid_number,
text)
if answer is not None:
regional_answer, error_message = process_outgoing_text(answer, language)
if regional_answer is not None:
if is_audio:
output_file, error_message = process_outgoing_voice(regional_answer, language)
if output_file is not None:
upload_file("output_audio_files", output_file.name)
audio_output_url = give_public_url(output_file.name)
output_file.close()
os.remove(output_file.name)
else:
status_code = 503
else:
audio_output_url = ""
else:
status_code = 503
else:
status_code = 503
engine = await create_engine()
await insert_qa_voice_logs(engine=engine, uuid_number=uuid_number, input_language=input_language.value,
output_format=output_medium, query=query_text, query_in_english=text,
paraphrased_query=paraphrased_query, response=regional_answer,
response_in_english=answer,
audio_output_link=audio_output_url, source_text=source_text, error_message=error_message)
await engine.close()
if status_code != 200:
raise HTTPException(status_code=status_code, detail=error_message)
response = ResponseForAudio()
response.query = query_text
response.query_in_english = text
response.answer = regional_answer
response.answer_in_english = answer
response.audio_output_url = audio_output_url
response.source_text = source_text
return response
@app.get("/rephrased-query", include_in_schema=False)
async def get_rephrased_query(query_string: str, username: str = Depends(get_current_username)):
load_dotenv()
answer = rephrased_question(query_string)
return {"given_query": query_string, "rephrased_query": answer}
@app.post("/source-document", tags=["Source Document over Document Store"], include_in_schema=False)
async def get_source_document(query_string: str = "", input_language: DropDownInputLanguage = DropDownInputLanguage.en,
audio_file: UploadFile = File(None), username: str = Depends(get_current_username)):
load_dotenv()
filename = ""
if audio_file is not None:
try:
contents = audio_file.file.read()
with open(audio_file.filename, 'wb') as f:
f.write(contents)
filename = audio_file.filename
except OSError:
return "There was an parsing the audio file"
answer = querying_with_tfidf(query_string, input_language.name, filename)
return answer
@app.get("/query-with-langchain-gpt4", tags=["Q&A over Document Store"], include_in_schema=False)
async def query_using_langchain_with_gpt4(uuid_number: str, query_string: str, username: str = Depends(get_current_username)) -> Response:
lowercase_query_string = query_string.lower() + uuid_number
if lowercase_query_string in cache:
print("Value in cache", lowercase_query_string)
return cache[lowercase_query_string]
else:
load_dotenv()
answer, source_text, paraphrased_query, error_message, status_code = querying_with_langchain_gpt4(uuid_number,
query_string)
if status_code != 200:
raise HTTPException(status_code=status_code, detail=error_message)
response = Response()
response.query = query_string
response.answer = answer
response.source_text = source_text
cache[lowercase_query_string] = response
return response
@app.get("/query-with-langchain-gpt4_streaming", tags=["Q&A over Document Store"], include_in_schema=False)
async def query_using_langchain_with_gpt4_streaming(uuid_number: str, query_string: str, username: str = Depends(get_current_username)) -> EventSourceResponse:
lowercase_query_string = "streaming_" + query_string.lower() + uuid_number
if lowercase_query_string in cache:
print("Value in cache", lowercase_query_string)
return cache[lowercase_query_string]
else:
load_dotenv()
response = querying_with_langchain_gpt4_streaming(uuid_number, query_string)
if isinstance(response, EventSourceResponse):
# If the response is already a StreamingResponse, return it directly
return response
# print(response)
if response.status_code != 200:
# If there's an error, raise an HTTPException
raise HTTPException(status_code=response.status_code, detail=response.text)
# Retrieve the response content
# response_content = await response.content.read()
# Create a StreamingResponse with the response content
streaming_response = EventSourceResponse(
response.content,
headers={"Content-Type":"text/plain"}
)
# Set the response headers
for header, value in response.headers.items():
streaming_response.headers[header] = value
# Store the streaming_response object in the cache
cache[lowercase_query_string] = streaming_response
return streaming_response
@app.get("/generate-mcq-questions", tags=["API for generating Multiple Choice Questions"], response_class = CSVResponse)
async def query_using_langchain_with_gpt4_mcq(uuid_number: str, query_string: str, skip_cache : bool = False, username: str = Depends(get_current_username)) -> CSVResponse:
load_dotenv()
start_time = time.time()
caching = False # disabled caching
uuid_number = uuid_number.strip()
lowercase_query_string = query_string.lower() + uuid_number
if (lowercase_query_string in cache) and (not skip_cache):
print("Value in cache", lowercase_query_string)
return CSVResponse(content=cache[lowercase_query_string])
else:
load_dotenv()
answer, source_text, paraphrased_query, error_message, status_code = querying_with_langchain_gpt4_mcq(
uuid_number,
query_string,
caching
)
end_time = time.time() - start_time
logger.info(f"********* TOTAL TIME TOOK **********>>>>> {end_time}")
if status_code != 200:
raise HTTPException(status_code=status_code, detail=error_message)
cache[lowercase_query_string] = answer
return CSVResponse(answer)
@app.get("/generate_answers", tags=["API for generating answers"])
async def query_using_langchain_with_gpt3(uuid_number: str, query_string: str, skip_cache : bool = False):
uuid_number = uuid_number.strip()
lowercase_query_string = query_string.lower() + uuid_number
if (lowercase_query_string in cache) and (not skip_cache):
print("Value in cache", lowercase_query_string)
return cache[lowercase_query_string]
else:
load_dotenv()
question_id = str(uuid.uuid1())
answer, source_text, paraphrased_query, error_message, status_code = querying_with_langchain_gpt3(uuid_number, query_string)
# engine = await create_engine()
await insert_sb_qa_logs(engine=db_engine, model_name="gpt-3.5-turbo-16k", uuid_number=uuid_number, question_id=question_id,
query=query_string, paraphrased_query=None, response=answer, source_text=source_text, error_message=error_message)
# await engine.close()
logger.info(f"Question ID =====> {question_id}")
if status_code != 200:
raise HTTPException(status_code=status_code, detail=error_message)
response = {
"id": question_id,
"query": query_string,
"answer": answer,
"source_text" : ''
}
cache[lowercase_query_string] = response
return response
@app.put("/user_feedback", tags=["API for recording user feedback for Q&A"])
async def feedback_endpoint(question_id: str = Form(...), feedback_type: FeedbackType = Form(...)):
load_dotenv()
# engine = await create_engine()
success_message, error_message, status_code = await record_user_feedback(db_engine, question_id, feedback_type.value)
# await engine.close()
if status_code != 200:
raise HTTPException(status_code=status_code, detail=error_message)
return {"message": f"Feedback recorded for question ID {question_id} with feedback type {feedback_type}"}