-
Notifications
You must be signed in to change notification settings - Fork 3
/
index-metagenomics.html
445 lines (340 loc) · 27.5 KB
/
index-metagenomics.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
<!DOCTYPE html>
<html lang="en">
<head>
<title>Galaxy Europe</title>
<meta property="og:title" content="" />
<meta property="og:description" content="" />
<meta property="og:image" content="/assets/media/galaxy-eu-logo.512.png" />
<meta name="description" content="The European Galaxy Instance">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<link rel="stylesheet" href="/assets/css/bootstrap.min.css">
<link rel="stylesheet" href="/assets/css/main.css">
<link rel="canonical" href="https://galaxyproject.eu/index-metagenomics.html">
<link rel="shortcut icon" href="/assets/media/galaxy-eu-logo.64.png" type="image/x-icon" />
<link rel="alternate" type="application/rss+xml" title="Galaxy Europe" href="/feed.xml">
<link href="/assets/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVnN" crossorigin="anonymous">
<script src="/assets/js/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script>
<script src="/assets/js/bootstrap.min.js" integrity="sha256-U5ZEeKfGNOja007MMD3YBI0A3OSZOQbeG6z2f2Y0hu8=" crossorigin="anonymous"></script>
</head>
<body>
<div id="wrap">
<div id="main">
<div class="container" id="maincontainer">
<div class="home">
<p><img src="/assets/media/asaim_logo.png" alt="Plant Analysis on Galaxy" class="sc-intro-left" /></p>
<h1 class="no_toc" id="welcome-to-galaxy-for-microbiome">Welcome to Galaxy for Microbiome</h1>
<p><br />
<strong>Galaxy for Microbiome</strong> (<a href="https://asaim.readthedocs.io/en/latest/" target="_blank">ASaiM</a>) is a webserver to process, analyse and visualize microbiome data in general. It is based on the <a href="https://galaxyproject.org" target="_blank">Galaxy framework</a>, which guarantees simple access, easy extension, flexible adaption to personal and security needs, and sophisticated analyses independent of command-line knowledge.</p>
<p><br /></p>
<h1 class="no_toc" id="content">Content</h1>
<ol id="markdown-toc">
<li><a href="#get-started" id="markdown-toc-get-started">Get started</a></li>
<li><a href="#training" id="markdown-toc-training">Training</a></li>
<li><a href="#tools" id="markdown-toc-tools">Tools</a></li>
<li><a href="#workflows" id="markdown-toc-workflows">Workflows</a> <ol>
<li><a href="#taxonomic-and-functional-community-profiling-of-raw-metagenomic-shotgun-data" id="markdown-toc-taxonomic-and-functional-community-profiling-of-raw-metagenomic-shotgun-data">Taxonomic and functional community profiling of raw metagenomic shotgun data</a></li>
<li><a href="#assembly-of-metagenomic-data" id="markdown-toc-assembly-of-metagenomic-data">Assembly of metagenomic data</a></li>
<li><a href="#analysis-of-metataxonomic-data" id="markdown-toc-analysis-of-metataxonomic-data">Analysis of metataxonomic data</a></li>
<li><a href="#asaim-mt-optimized-workflow-for-metatranscriptomics-data-analysis" id="markdown-toc-asaim-mt-optimized-workflow-for-metatranscriptomics-data-analysis">ASaiM-MT: Optimized workflow for metatranscriptomics data analysis</a></li>
<li><a href="#integrative-meta-omics-analysis---metagenomics-metatranscriptomics-metaproteomics" id="markdown-toc-integrative-meta-omics-analysis---metagenomics-metatranscriptomics-metaproteomics">Integrative meta-omics analysis - Metagenomics, Metatranscriptomics, Metaproteomics</a></li>
</ol>
</li>
<li><a href="#references" id="markdown-toc-references">References</a></li>
</ol>
<h1 id="get-started">Get started</h1>
<p>Are you new to Galaxy, or returning after a long time, and looking for help to get started? Take a <a href="/tours/core.galaxy_ui" target="_blank"><strong>guided tour</strong></a> through Galaxy’s user interface.</p>
<h1 id="training">Training</h1>
<p>We are working in close collaboration with the <a href="https://training.galaxyproject.org" target="_blank"><strong>Galaxy Training Network (GTN)</strong></a> to develop training materials of data analyses based on Galaxy. If you want to know more about the GTN or how to become part of the Galaxy community, check the videos below!</p>
<iframe width="560" height="315" src="https://www.youtube.com/embed/lDqWxzWNk1k" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen="">
</iframe>
<iframe width="560" height="315" src="https://www.youtube.com/embed/-1MPdxmRs8U" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen=""></iframe>
<p><br /><br /></p>
<p><strong>Training material</strong></p>
<p>All relevant materials for <a href="https://training.galaxyproject.org/topics/metagenomics">microbiome data analysis</a> can also be found within the GTN.</p>
<table class="table table-striped">
<thead>
<tr>
<th>Lesson</th>
<th>Slides</th>
<th>Hands-on</th>
<th>Input dataset</th>
<th>Workflows</th>
<th>Galaxy History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome and introduction to Galaxy</td>
<td><a href="https://training.galaxyproject.org/topics/introduction/tutorials/galaxy-intro-short/slides.html" target="_blank"><i class="fa fa-slideshare" aria-hidden="true"></i></a> / <a href="https://training.galaxyproject.org/videos/watch.html?v=introduction/tutorials/galaxy-intro-short/slides" target="_blank"><i class="fa fa-video-camera" aria-hidden="true"></i></a></td>
<td><a href="https://training.galaxyproject.org/training-material/topics/introduction/tutorials/galaxy-intro-short/tutorial.html" target="_blank"><i class="fa fa-laptop" aria-hidden="true"></i></a></td>
<td><a href="https://doi.org/10.5281/zenodo.582600" target="_blank"><i class="fa fa-files-o" aria-hidden="true"></i></a></td>
<td><a href="https://training.galaxyproject.org/training-material/topics/introduction/tutorials/galaxy-intro-short/workflows/" target="_blank"><i class="fa fa-share-alt" aria-hidden="true"></i></a></td>
<td> </td>
</tr>
<tr>
<td>An Introduction to Metagenomics</td>
<td><a href="https://training.galaxyproject.org/topics/metagenomics/slides/introduction.html#1" target="_blank"><i class="fa fa-slideshare" aria-hidden="true"></i></a></td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>Quality Control</td>
<td><a href="https://training.galaxyproject.org/topics/sequence-analysis/tutorials/quality-control/slides.html" target="_blank"><i class="fa fa-slideshare" aria-hidden="true"></i></a> / <a href="https://youtu.be/BWonTPS4zB8" target="_blank"><i class="fa fa-video-camera" aria-hidden="true"></i></a></td>
<td><a href="https://training.galaxyproject.org/topics/sequence-analysis/tutorials/quality-control/tutorial.html" target="_blank"><i class="fa fa-laptop" aria-hidden="true"></i></a> / <a href="https://youtu.be/QJRlX2hWDKM" target="_blank"><i class="fa fa-video-camera" aria-hidden="true"></i></a></td>
<td><a href="https://doi.org/10.5281/zenodo.61771" target="_blank"><i class="fa fa-files-o" aria-hidden="true"></i></a></td>
<td><a href="https://training.galaxyproject.org/topics/sequence-analysis/tutorials/quality-control/workflows/" target="_blank"><i class="fa fa-share-alt" aria-hidden="true"></i></a></td>
<td><a href="/u/gallardoalba/h/quality-control" target="_blank"><i class="fa fa-list-ul" aria-hidden="true"></i></a></td>
</tr>
<tr>
<td>16S Microbial Analysis with mothur</td>
<td><a href="https://www.youtube.com/watch?v=9OY1mklWuK0" target="_blank"><i class="fa fa-video-camera" aria-hidden="true"></i></a></td>
<td><a href="https://training.galaxyproject.org/topics/metagenomics/tutorials/mothur-miseq-sop-short/tutorial.html" target="_blank"><i class="fa fa-laptop" aria-hidden="true"></i>Short</a> / <a href="https://training.galaxyproject.org/topics/metagenomics/tutorials/mothur-miseq-sop/tutorial.html" target="_blank"><i class="fa fa-laptop" aria-hidden="true"></i>Extended</a> / <a href="https://youtu.be//mto4Nl-q7Kk" target="_blank"><i class="fa fa-video-camera" aria-hidden="true"></i></a></td>
<td><a href="https://doi.org/10.5281/zenodo.800651" target="_blank"><i class="fa fa-files-o" aria-hidden="true"></i></a></td>
<td><a href="https://training.galaxyproject.org/topics/metagenomics/tutorials/mothur-miseq-sop-short/workflows/" target="_blank"><i class="fa fa-share-alt" aria-hidden="true"></i></a></td>
<td> </td>
</tr>
<tr>
<td>16S Microbial analysis with Nanopore data</td>
<td> </td>
<td><a href="https://training.galaxyproject.org/topics/metagenomics/tutorials/nanopore-16S-metagenomics/tutorial.html" target="_blank"><i class="fa fa-laptop" aria-hidden="true"></i></a></td>
<td><a href="https://zenodo.org/record/4274812" target="_blank"><i class="fa fa-files-o" aria-hidden="true"></i></a></td>
<td><a href="https://training.galaxyproject.org/topics/metagenomics/tutorials/nanopore-16S-metagenomics/workflows/" target="_blank"><i class="fa fa-share-alt" aria-hidden="true"></i></a></td>
<td> </td>
</tr>
<tr>
<td>Analyses of metagenomics data - The global picture</td>
<td> </td>
<td><a href="https://training.galaxyproject.org/topics/metagenomics/tutorials/general-tutorial/tutorial.html" target="_blank"><i class="fa fa-laptop" aria-hidden="true"></i></a></td>
<td><a href="https://doi.org/10.5281/zenodo.815875" target="_blank"><i class="fa fa-files-o" aria-hidden="true"></i></a></td>
<td><a href="https://training.galaxyproject.org/topics/metagenomics/tutorials/general-tutorial/workflows/" target="_blank"><i class="fa fa-share-alt" aria-hidden="true"></i></a></td>
<td> </td>
</tr>
<tr>
<td>Metatranscriptomics analysis using microbiome RNA-seq data</td>
<td><a href="https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/metatranscriptomics/slides.html" target="_blank"><i class="fa fa-slideshare" aria-hidden="true"></i></a></td>
<td><a href="https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/metatranscriptomics-short/tutorial.html" target="_blank"><i class="fa fa-laptop" aria-hidden="true"></i>Short</a> / <a href="https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/metatranscriptomics/tutorial.html" target="_blank"><i class="fa fa-laptop" aria-hidden="true"></i>Extended</a></td>
<td><a href="https://zenodo.org/record/4776250" target="_blank"><i class="fa fa-files-o" aria-hidden="true"></i></a></td>
<td><a href="https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/metatranscriptomics-short/workflows/" target="_blank"><i class="fa fa-share-alt" aria-hidden="true"></i></a></td>
<td> </td>
</tr>
<tr>
<td>Metaproteomics introduction</td>
<td> </td>
<td><a href="https://training.galaxyproject.org/training-material/topics/proteomics/tutorials/metaproteomics/tutorial.html" target="_blank"><i class="fa fa-laptop" aria-hidden="true"></i></a> / <a href="https://youtu.be//3_yaPp-RCFw" target="_blank"><i class="fa fa-video-camera" aria-hidden="true"></i></a></td>
<td><a href="https://doi.org/10.5281/zenodo.839701" target="_blank"><i class="fa fa-files-o" aria-hidden="true"></i></a></td>
<td><a href="https://training.galaxyproject.org/training-material/topics/proteomics/tutorials/metaproteomics/workflows/" target="_blank"><i class="fa fa-share-alt" aria-hidden="true"></i></a></td>
<td> </td>
</tr>
</tbody>
</table>
<h1 id="tools">Tools</h1>
<p>More than <strong>200 tools</strong> are avalaible for microbiome data analysis in this custom Galaxy instance:</p>
<ul>
<li><strong>General tools</strong>
<ul>
<li><strong>Data retrieval</strong>: EBISearch, ENASearch, SRA Tools</li>
<li><strong>BAM/SAM file manipulation</strong>: SAM tools</li>
<li><strong>BIOM file manipulation</strong>: BIOM-Format tools</li>
</ul>
</li>
<li><strong>Genomics tools</strong>
<ul>
<li><strong>Quality control</strong>: FastQC, PRINSEQ, Cutadapt, fastp, Trimmomatic, MultiQC</li>
<li><strong>Clustering</strong>: CD-Hit</li>
<li><strong>Sorting and prediction</strong>: SortMeRNA, FragGeneScan</li>
<li><strong>Mapping</strong>: BWA, Bowtie</li>
<li><strong>Similarity search</strong>: NCBI Blast+, Diamond</li>
<li><strong>Alignment</strong>: HMMER3</li>
</ul>
</li>
<li><strong>Microbiota dedicated tools</strong>
<ul>
<li><strong>Microbial</strong>: Scoary, Prokka, Roary</li>
<li><strong>Metagenomics data manipulation</strong>: VSearch, Nonpareil, DADA2</li>
<li><strong>Assembly</strong>: MEGAHIT, metaSPAdes, metaQUAST, VALET, Bandage, MaxBin2</li>
<li><strong>Metataxonomic sequence analysis</strong>: Mothur, QIIME, Vegan</li>
<li><strong>Taxonomy assignation</strong>: MetaPhlAn, Kraken, CAT/BAT</li>
<li><strong>Metabolism assignation</strong>: HUMAnN, PICRUST, InterProScan</li>
<li><strong>Visualization</strong>: Export2graphlan, GraPhlAn, KRONA</li>
<li><strong>Metaproteomics</strong>: MaxQuant, SearchGUI, PeptideShaker, Unipept</li>
</ul>
</li>
</ul>
<h1 id="workflows">Workflows</h1>
<p>To orchestrate tools and help users with their analyses, several <a href="https://asaim.readthedocs.io/en/latest/workflows.html" target="_blank">workflows</a> are available. They formally orchestrate tools in a defined order and with defined parameters, but they are customizable (tools, order, parameters).</p>
<p>The workflows are available in the <a href="/workflows/list_published">Shared Workflows</a>, with the label “<strong><em>asaim</em></strong>”.</p>
<h2 id="taxonomic-and-functional-community-profiling-of-raw-metagenomic-shotgun-data">Taxonomic and functional community profiling of raw metagenomic shotgun data</h2>
<p>The workflow quickly produces, from raw metagenomic shotgun data, accurate and precise taxonomic assignations, wide extended functional results and taxonomically related metabolism information</p>
<p><img src="/assets/media/2018-01-17-asaim_main_workflow.png" alt="ASaiM main workflow" width="75%" /></p>
<p>This workflow consists of</p>
<ol>
<li>Processing with quality control/trimming (<strong>FastQC</strong> and <strong>Trim Galore!</strong>) and dereplication (<strong>VSearch</strong>)</li>
<li>Taxonomic analyses with assignation (<strong>MetaPhlAn2</strong>) and visualization (<strong>KRONA</strong>, <strong>GraPhlAn</strong>)</li>
<li>Functional analyses with metabolic assignation and pathway reconstruction (<strong>HUMAnN2</strong>)</li>
<li>Functional and taxonomic combination with developed tools combining HUMAnN2 and MetaPhlAn2 outputs</li>
</ol>
<p>It is available with 4 versions, given the input</p>
<ol>
<li>Simple files: <a href="/u/berenice/w/asaim-shotgun-workflow">Single-end</a> or <a href="/u/berenice/w/asaim---shotgun-workflow-for-paired-end-data">paired-end</a></li>
<li>Collection input files: <a href="/u/berenice/w/asaim-shotgun-workflow-se-collection">Single-end</a> or <a href="/u/berenice/w/asaim---shotgun-workflow-for-paired-end-data-collection">paired-end</a></li>
</ol>
<h2 id="assembly-of-metagenomic-data">Assembly of metagenomic data</h2>
<p>To reconstruct genomes or to get longer sequences for further analysis, microbiota data needs to be assembled, using the recently developed metagenomics assemblers.</p>
<p>To help in this task, two workflows have been developed using two different well-performing assemblers:</p>
<ul>
<li>
<p><a href="/u/berenice/w/asaim-metagenomic-assembly-with-megahit">MEGAHIT</a></p>
<p>It is currently the most efficent computationally assembler: it has the lowest memory and time consumption <a class="citation" href="#van2017assembling">(van der Walt <i>et al.</i>, 2017; Awad <i>et al.</i>, 2017; Sczyrba <i>et al.</i>, 2017)</a>. It produced some of the best assemblies (irrespective of sequencing coverage) with the fewest structural errors <a class="citation" href="#olson2017metagenomic">(Olson <i>et al.</i>, 2017)</a> and outperforms in recovering the genomes of closely related strains <a class="citation" href="#awad2017evaluating">(Awad <i>et al.</i>, 2017)</a>, but has a bias towards relatively low coverage genomes leading to a suboptimal assembly of high abundant community member genomes in very large datasets <a class="citation" href="#vollmers2017comparing">(Vollmers <i>et al.</i>, 2017)</a></p>
</li>
<li>
<p><a href="/u/berenice/w/asaim-metagenomic-assembly-with-metaspades">MetaSPAdes</a></p>
<p>It is particularly optimal for high-coverage metagenomes <a class="citation" href="#van2017assembling">(van der Walt <i>et al.</i>, 2017)</a> with the best contig metrics <a class="citation" href="#greenwald2017utilization">(Greenwald <i>et al.</i>, 2017)</a> and produces few under-collapsed/over-collapsed repeats <a class="citation" href="#olson2017metagenomic">(Olson <i>et al.</i>, 2017)</a></p>
</li>
</ul>
<p>Both workflows consists of</p>
<ol>
<li>Processing with quality control/trimming (<strong>FastQC</strong> and <strong>Trim Galore!</strong>)</li>
<li>Assembly with either <strong>MEGAHIT</strong> or <strong>MetaSPAdes</strong></li>
<li>Estimation of the assembly quality statistics with <strong>MetaQUAST</strong></li>
<li>Identification of potential assembly error signature with <strong>VALET</strong></li>
<li>Determination of percentage of unmapped reads with <strong>Bowtie2</strong> combined with <strong>MultiQC</strong> to aggregate the results.</li>
</ol>
<p><img src="/assets/media/microbiome_assembly_wf.png" alt="ASaiM assembly workflows" width="75%" /></p>
<h2 id="analysis-of-metataxonomic-data">Analysis of metataxonomic data</h2>
<p>To analyze amplicon data, the <strong>Mothur</strong> and <strong>QIIME</strong> tool suites are available there. We implemented the workflows described in tutorials of Mothur and QIIME websites, as example of amplicon data analyses as well as support for the training material. These workflows, as any workflows available there, can be adapted for a specific analysis or used as subworkflows by the users.</p>
<h2 id="asaim-mt-optimized-workflow-for-metatranscriptomics-data-analysis">ASaiM-MT: Optimized workflow for metatranscriptomics data analysis</h2>
<p>While the shotgun workflow is suitable for both metagenomics and metatranscriptomics datasets, we also offer an enhanced workflow aimed specifically at metatranscriptomics data.</p>
<p><img src="/assets/media/asaim/asaim-mt_workflow.png" alt="ASaiM-MT workflow" width="50%" /></p>
<p>The workflow is divided into 4 parts:</p>
<ol>
<li><strong>Preprocessing</strong> - Process raw metatranscriptomics data to perform further analysis.</li>
<li><strong>Taxonomy Quantitation</strong> - Assignment of taxonomy along with abundance values and visualization.</li>
<li><strong>Functional Quantitation</strong> - metabolic assignment of identified functions and gene and pathway abundance annotation.</li>
<li><strong>Taxonomy-Function Quantitation</strong> - combine taxonomy and functional quantitation values into relative abundance values at different levels such as e.g. the abundance of a pathway between phyla.</li>
</ol>
<h2 id="integrative-meta-omics-analysis---metagenomics-metatranscriptomics-metaproteomics">Integrative meta-omics analysis - Metagenomics, Metatranscriptomics, Metaproteomics</h2>
<p>The combination of metagenomics, -transcriptomics and -proteomics can provide a detailed understanding of which organisms occupy specific metabolic niches, how they interact, and how they utilize environmental nutrients. Commonly used omics tools spanning metagenomics, -transcriptomics and -proteomics has been adapted into an integrated meta-omics analysis pipeline:</p>
<ul>
<li>
<p><strong>Metagenomics</strong></p>
<p><img src="/assets/media/magnus/metagenomics.png" alt="Magnus metagenomics workflow" /></p>
</li>
<li>
<p><strong>Metatranscriptomics</strong></p>
<p><img src="/assets/media/magnus/metatranscriptomics.png" alt="Magnus metatranscriptomics workflow" width="75%" /></p>
</li>
<li>
<p><strong>Metaproteomics</strong></p>
<p><img src="/assets/media/magnus/metaproteomics.png" alt="Magnus metaproteomics workflow" width="50%" /></p>
</li>
<li>
<p>Integration of omics data using R</p>
</li>
</ul>
<p>This pipeline has been applied to <a href="/posts/2020/04/14/integrative-meta-omics/">deconvolute a highly efficient cellulose-degrading minimal consortium isolated and enriched from a biogas reactor in Fredrikstad, Norway</a></p>
<h1 id="references">References</h1>
<ol class="bibliography"><li><span id="index-metagenomics-awad2017evaluating">Awad,S. <i>et al.</i> (2017) Evaluating Metagenome Assembly on a Simple Defined Community with Many Strain Variants. <i>bioRxiv</i>, 155358.</span></li>
<li><span id="index-metagenomics-greenwald2017utilization">Greenwald,W.W. <i>et al.</i> (2017) Utilization of defined microbial communities enables effective evaluation of meta-genomic assemblies. <i>BMC genomics</i>, <b>18</b>, 296.</span></li>
<li><span id="index-metagenomics-olson2017metagenomic">Olson,N.D. <i>et al.</i> (2017) Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes. <i>Briefings in Bioinformatics</i>, bbx098.</span></li>
<li><span id="index-metagenomics-sczyrba2017critical">Sczyrba,A. <i>et al.</i> (2017) Critical Assessment of Metagenome Interpretation- a benchmark of computational metagenomics software. <i>Biorxiv</i>, 099127.</span></li>
<li><span id="index-metagenomics-van2017assembling">Walt,A.J. van der <i>et al.</i> (2017) Assembling metagenomes, one community at a time. <i>bioRxiv</i>, 120154.</span></li>
<li><span id="index-metagenomics-vollmers2017comparing">Vollmers,J. <i>et al.</i> (2017) Comparing and Evaluating Metagenome Assembly Tools from a Microbiologist’s Perspective-Not Only Size Matters! <i>PloS one</i>, <b>12</b>, e0169662.</span></li></ol>
<h2>Our Data Policy</h2>
<table class="table table-striped">
<thead>
<tr>
<th>Registered Users</th><th>Unregistered Users</th><th>FTP Data</th><th>GDPR Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>User data on UseGalaxy.eu (i.e. datasets, histories) will be available as long
as they are not deleted by the user. Once marked as deleted the datasets will
be permanently removed within 14 days. If the user "purges" the dataset in the
Galaxy, it will be removed immediately, permanently.
An <a href="https://docs.google.com/forms/d/e/1FAIpQLSf9w2MOS6KOlu9XdhRSDqWnCDkzoVBqHJ3zH_My4p8D8ZgkIQ/viewform" target="_blank">extended quota can be requested</a>
for a limited time period in special cases.
</td>
<td>Processed data will only be accessible during one browser session, using a
cookie to identify your data. This cookie is not used for any other purposes
(e.g. tracking or analytics).
If UseGalaxy.eu service is not accessed for 90 days, those datasets will be
permanently deleted.
</td>
<td>Any user data uploaded to our <a href="https://galaxyproject.eu/ftp/">FTP server</a> should be imported into Galaxy as soon
as possible. Data left in FTP folders for more than 3 months, will be deleted.
</td>
<td>The Galaxy service complies with the EU General Data Protection Regulation
(GDPR). You can read more about this on our
<a href="https://usegalaxy.eu/terms/">Terms and Conditions</a>.</td>
</tr>
</tbody>
</table>
<!-- <h4>Registered Users</h4>
User data on UseGalaxy.eu (i.e. datasets, histories) will be available as long
as they are not deleted by the user. Once marked as deleted the datasets will
be permanently removed within 14 days. If the user "purges" the dataset in the
Galaxy, it will be removed immediately, permanently.
An <a href="https://docs.google.com/forms/d/e/1FAIpQLSf9w2MOS6KOlu9XdhRSDqWnCDkzoVBqHJ3zH_My4p8D8ZgkIQ/viewform" target="_blank">extended quota can be requested</a>
for a limited time period in special cases.
<h4>Unregistered Users</h4>
Processed data will only be accessible during one browser session, using a
cookie to identify your data. This cookie is not used for any other purposes
(e.g. tracking or analytics).
If UseGalaxy.eu service is not accessed for 90 days, those datasets will be
permanently deleted.
<h4>FTP Data</h4>
Any user data uploaded to our <a href="https://galaxyproject.eu/ftp/">FTP server</a> should be imported into Galaxy as soon
as possible. Data left in FTP folders for more than 3 months, will be deleted.
<h4>GDPR Compliance</h4>
The Galaxy service complies with the EU General Data Protection Regulation
(GDPR). You can read more about this on our
<a href="https://usegalaxy.eu/terms/">Terms and Conditions</a>.
-->
<div>
<iframe style="border: 0px" width="100%" height="150px" src="https://stats.galaxyproject.eu/d-solo/000000034/jobs-dashboard?orgId=1&refresh=1m&panelId=1" ></iframe>
</div>
<div>
<!--<iframe style="border: 0px" width="33%" height="100px" src="https://stats.galaxyproject.eu/d-solo/000000034/jobs-dashboard?orgId=1&refresh=1m&panelId=3" ></iframe>-->
</div>
<div class="row">
<section class="section-content">
<div class="col-md-12">
</div>
</section>
</div>
</div>
</div>
</div>
</div>
<footer class="navbar-default">
<div class="container">
<div class="row">
</div>
<div class="row">
<div class="col-lg-12" style="text-align:center">
<p>UseGalaxy.eu is maintained largely by the <a href="/freiburg/">Freiburg Galaxy Team</a> but also collectively by groups and individuals from across Europe. All of the member sites in this repository contribute to the European Galaxy Project.
For <strong>acknowledgement</strong>, please refer to the <a href="/about">About</a> section.
All content on this site is available under <a href="https://creativecommons.org/share-your-work/public-domain/cc0/">CC0-1.0</a> unless otherwise specified.</p>
</div>
</div>
<div class="row">
<div class="col-lg-12" style="text-align:center">
<ul class="contact-info">
<li><i class="fa fa-github"></i><a href="https://github.com/usegalaxy-eu/website/tree/master/index-metagenomics.md">Edit this page on GitHub</a></li>
<li><i class="fa fa-envelope"></i><a href="mailto:contact@usegalaxy.eu">contact@usegalaxy.eu</a></li>
<li><i class="fa fa-github"></i><a href="https://github.com/usegalaxy-eu">usegalaxy-eu</a></li>
<li><img class="fa-mastodon" src="/assets/media/mastodon.svg" style="width:18px;height:18px;padding-right:4px;filter:grayscale(100%);-webkit-filter:grayscale(100%);"/><a href="https://bawü.social/@galaxyfreiburg">galaxyfreiburg</a></li>
<li><i class="fa fa-rss"></i>Subscribe <a href="/feed.xml">via RSS (UseGalaxy.eu Feed)</a></li>
</ul>
</div>
</div>
</div>
</footer>
<script async defer data-domain="galaxyproject.eu" src="https://plausible.galaxyproject.eu/js/plausible.js"></script>
</body>
</html>