-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_registration.py
135 lines (119 loc) · 4.7 KB
/
visualize_registration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import matplotlib.pyplot as plt
import torch
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
def visualize_registration(source, target, registered):
"""
Plots the registration from source to target
Arguments:
source (ndarray, torch.tensor)
target (ndarray, torch.tensor)
registered (ndarray, torch.tensor)
Returns if the formats are not correct
"""
# Convert everything to numpy
if isinstance(source, np.ndarray):
source = source / source.max()
elif torch.is_tensor(source):
source = source.detach().cpu().squeeze().numpy()
source = source / source.max()
else:
return
if isinstance(target, np.ndarray):
target = target / target.max()
elif torch.is_tensor(target):
target = target.detach().cpu().squeeze().numpy()
target = target / target.max()
else:
return
if isinstance(registered, np.ndarray):
registered = registered / registered.max()
elif torch.is_tensor(registered):
registered = registered.detach().cpu().squeeze().numpy()
registered = registered / registered.max()
else:
return
# Start plotting
fontsize = 10
fig, axs = plt.subplots(2, 3)
plt.axis("off")
# Plot the source
a1 = axs[0, 0].imshow(source, cmap="gray")
axs[0, 0].set_title("Source", fontsize=fontsize)
axs[0, 0].set_xticks([])
axs[0, 0].set_yticks([])
divider = make_axes_locatable(axs[0, 0])
cax = divider.append_axes("right", size="5%", pad=0.05)
fig.colorbar(a1, cax=cax)
# Plot the registered image
a2 = axs[0, 1].imshow(registered, cmap="gray")
axs[0, 1].set_title("Registered", fontsize=fontsize)
axs[0, 1].set_xticks([])
axs[0, 1].set_yticks([])
divider = make_axes_locatable(axs[0, 1])
cax = divider.append_axes("right", size="5%", pad=0.05)
fig.colorbar(a2, cax=cax)
# Plot the target image
a3 = axs[0, 2].imshow(target, cmap="gray")
axs[0, 2].set_title("Target", fontsize=fontsize)
axs[0, 2].set_xticks([])
axs[0, 2].set_yticks([])
divider = make_axes_locatable(axs[0, 2])
cax = divider.append_axes("right", size="5%", pad=0.05)
fig.colorbar(a3, cax=cax)
# Plot the difference between the target and the registered source
a4 = axs[1, 0].imshow(target - registered, vmin=-0.5, vmax=0.5, cmap="gray")
axs[1, 0].set_title("t - r", fontsize=fontsize)
axs[1, 0].set_xticks([])
axs[1, 0].set_yticks([])
divider = make_axes_locatable(axs[1, 0])
cax = divider.append_axes("right", size="5%", pad=0.05)
fig.colorbar(a4, cax=cax)
# Plot the difference between the target and the source
a5 = axs[1, 1].imshow(target - source, vmin=-0.5, vmax=0.5, cmap="gray")
axs[1, 1].set_title("t - s", fontsize=fontsize)
axs[1, 1].set_xticks([])
axs[1, 1].set_yticks([])
divider = make_axes_locatable(axs[1, 1])
cax = divider.append_axes("right", size="5%", pad=0.05)
fig.colorbar(a5, cax=cax)
plt.show()
def plot_deformation_grid(phi, ax=None):
"""
Takes a registration function phi and plots a deformation grid
Arguments:
phi (torch.tensor): the registration function
"""
x_d = phi[:, :, 0].detach().cpu().numpy()
y_d = phi[:, :, 1].detach().cpu().numpy()
if ax is None:
contourx = plt.contour(x_d, levels=np.linspace(x_d.min(), x_d.max(), 30), colors="red", linewidths=0.5, linestyles="solid")
contoury = plt.contour(y_d, levels=np.linspace(y_d.min(), y_d.max(), 30), colors="red", linewidths=0.5, linestyles="solid")
plt.title("Deformation Grid")
ax1 = contourx.axes
ax2 = contoury.axes
ax1.set_aspect('equal', 'box')
ax2.set_aspect('equal', 'box')
ax2.invert_yaxis()
plt.show()
else:
ax.contour(x_d, levels=np.linspace(x_d.min(), x_d.max(), 30), colors="red", linewidths=0.5, linestyles="solid")
ax.contour(y_d, levels=np.linspace(y_d.min(), y_d.max(), 30), colors="red", linewidths=0.5, linestyles="solid")
ax.set_aspect('equal', 'box')
ax.set_title("Deformation Grid")
ax.invert_yaxis()
return ax
def plot_image_deformation(registered, phi, ax=None):
"""
Takes a registered image and its registration function phi and plots the image with a superimposed registration grid
Arguments:
registered (torch.tensor): the registered image
phi (torch.tensor): the registration fun
"""
if ax is not None:
ax.imshow(registered.detach().cpu().numpy(), vmin=0, cmap="gray")
ax = plot_deformation_grid(phi, ax)
return ax
else:
plt.imshow(registered.detach().cpu().numpy(), vmin=0, cmap="gray")
plot_deformation_grid(phi)