Skip to content

Latest commit

 

History

History
35 lines (26 loc) · 1.41 KB

README.md

File metadata and controls

35 lines (26 loc) · 1.41 KB

Unsupervised Discovery of 3D Hierarchical Structure with Generative Diffusion Features

This repo includes the code for Unsupervised Discovery of 3D Hierarchical Structure with Generative Diffusion Features.

We show our method on the Synthetic 3D Dataset from Hsu et al (regular, irregular) and also on BraTS'19

Pipeline

  1. Diffusion model training

    python diffusionTrain.py --dataset_path <folder with training images> -output_path <folder to save diffusion models> 
    
  2. Unsupervised segmentation/discovery model training

    python segTrain.py --dataset_path <folder with training images> --d_ckpt <folder with saved diffusion models> --output_path <folder to save segmentation models>
    

Citation

If you find this project useful, please cite:

@inproceedings{tursynbek2023unsupervised,
  title={Unsupervised Discovery of 3D Hierarchical Structure with Generative Diffusion Features},
  author={Tursynbek, Nurislam and Niethammer, Marc},
  booktitle={Medical Image Computing and Computer Assisted Intervention – MICCAI 2023},
  year={2023},
  publisher="Springer Nature Switzerland",
  address="Cham",
  pages="320--330",
  isbn="978-3-031-43907-0"
}