-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoai_image_analysis.py
329 lines (267 loc) · 16.8 KB
/
oai_image_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#!/usr/bin/env python
"""
Created by zhenlinxu on 01/04/2019
"""
import os
import sys
sys.path.append(os.path.realpath(".."))
from multiprocessing import Pool
from functools import partial
import SimpleITK as sitk
import numpy as np
from segmentation.segmenter import Segmenter3DInPatchClassWise
from registration.registers import NiftyReg, AVSMReg
from shape_analysis.cartilage_shape_processing import get_cartilage_surface_mesh_from_segmentation_file, \
map_thickness_to_atlas_mesh, surface_distance, map_thickness_to_2D_projection
from data.pre_process import label2image, image_normalize, reset_sitk_image_coordinates, flip_left_right
class OAIImageAnalysis:
def __init__(self,use_nifti=True):
self.segmenter = Segmenter3DInPatchClassWise()
self.use_nifti = use_nifti
self.register = NiftyReg() if use_nifti else AVSMReg()
self.atlas_image_file = None
# self.atlas_mask_file = None
self.atlas_FC_mesh_file = None
self.atlas_TC_mesh_file = None
self.atlas_FC_2D_map_file = None
self.atlas_TC_2D_map_file = None
self.surface_distance_FC = [] # should be Nx4 array, columns are max, min, median, 95%max
self.surface_distance_TC = []
def set_atlas(self, atlas_image_file, atlas_FC_mesh_file, atlas_TC_mesh_file):
self.atlas_image_file = atlas_image_file
# self.atlas_mask_file = None
self.atlas_FC_mesh_file = atlas_FC_mesh_file
self.atlas_TC_mesh_file = atlas_TC_mesh_file
def compute_atlas_2D_map(self,n_jobs=-1):
from sklearn.manifold import MDS
import pymesh
mds = MDS(2, max_iter=20000, n_init=10, n_jobs=n_jobs)
altas_2D_file_list = [self.atlas_FC_2D_map_file,self.atlas_TC_2D_map_file]
altas_file_list = [self.atlas_FC_mesh_file,self.atlas_TC_mesh_file]
for i, altas_2D_file in enumerate(altas_2D_file_list):
if not os.path.isfile(altas_2D_file):
os.makedirs(os.path.split(altas_2D_file)[1],exist_ok=True)
print("The file {} does not exist, now compute the 2d map from atlas, it will take hours, if the default setting out of memory, you may need to use"
"less processers, change 'n_jobs' in MDS ".format(altas_2D_file))
mesh = pymesh.load_mesh(altas_file_list[i])
vertices = mesh.vertices
embedded = mds.fit_transform(vertices)
np.save(altas_2D_file, embedded)
print("Completed. The 2D map is saved into {}".format(altas_2D_file))
def set_atlas_2D_map(self,atlas_FC_2D_map_file='./atlas/FC_inner_embedded.npy', atlas_TC_2D_map_file='./atlas/TC_inner_embedded.npy'):
self.atlas_FC_2D_map_file = atlas_FC_2D_map_file
self.atlas_TC_2D_map_file =atlas_TC_2D_map_file
def set_segmenter(self, segmenter):
self.segmenter = segmenter
def close_segmenter(self):
"""deinit the segmenter to release resources"""
self.segmenter = None
def set_register(self, register, affine_config, bspline_config):
self.register = register
self.affine_config = affine_config
self.bspline_config = bspline_config
def set_preprocess(self, bias_correct=False, reset_coord=True, normalize_intensity=True,
flip_to="LEFT"):
"""
config preprocessing
:param bias_correct: if do bias field correction
:param reset_coord: if reset image origin and orientation
:param normalize_intensity: if normalize image intensity into [0.1]
:param flip_to: if flip all image to a constant side e.g. 'left' means flip all left image to right
:return:
"""
self.bias_correct = bias_correct
self.flip_to = flip_to
self.reset_coord = reset_coord
self.normalize_intensity = normalize_intensity
def preprocess(self, oai_image, overwrite=False):
"""
:param oai_image: OAIImage object
:param overwrite: if overwrite existing image files
:return:
"""
# oai_image.folder = os.path.join(self.save_root, str(oai_image.patient_id), oai_image.modality, oai_image.part,
# self.visit_description[oai_image.visit_month])
if not os.path.exists(oai_image.folder):
os.makedirs(oai_image.folder, exist_ok=True)
# oai_image.preprocessed_image_file = os.path.join(oai_image.folder, 'image_preprocessed.nii.gz')
if overwrite or (not os.path.isfile(oai_image.preprocessed_image_file)):
reader = sitk.ImageSeriesReader()
dicom_names = reader.GetGDCMSeriesFileNames(oai_image.raw_folder)
print("Read {} DICOM slices in {}".format(len(dicom_names), oai_image.raw_folder))
reader.SetFileNames(dicom_names)
image = reader.Execute()
image = sitk.Cast(image, sitk.sitkFloat32)
# bias field correction
if self.bias_correct:
# if want to use all voxels
all_mask = label2image(np.ones(sitk.GetArrayFromImage(image).shape).astype(int),image)
image = sitk.Add(image, 1)
image = sitk.N4BiasFieldCorrection(image, maskImage=all_mask)
image = sitk.Subtract(image, 1)
# rescale the intensity
if self.normalize_intensity:
print("Normalizing: {}".format(oai_image.name))
image = image_normalize(image, 0.1, 99.9, 0, 1)
# reset original and orientation
if self.reset_coord:
# reset original and orientation
print("reset coordinates: {}".format(oai_image.name))
reset_sitk_image_coordinates(image, [0, 0, 0], [0, 0, -1, 1, 0, 0, 0, -1, 0])
# flip the left and right:
if self.flip_to and (self.flip_to not in oai_image.part):
print("flipping {}".format(oai_image.name))
image = flip_left_right(image)
print("Saving:{} at {}".format(oai_image.name, oai_image.folder))
sitk.WriteImage(image, oai_image.preprocessed_image_file)
def segment_image_and_save_results(self, oai_image, overwrite=False):
"""
Segment image and save the integer mask and probmap.
The results are saved into a folder named by the segmenter's name under the path of image file.
:param oai_image
:param overwrite: if overwrite existing segmentations
:return: None
"""
# generate segmentation folder and files path
# FC_probmap_file = os.path.join(oai_image.folder, 'FC_probmap.nii.gz')
# TC_probmap_file = os.path.join(oai_image.folder, 'TC_probmap.nii.gz')
if (not overwrite) and os.path.isfile(oai_image.FC_probmap_file) and os.path.isfile(oai_image.TC_probmap_file):
print("Segmentations found at {}".format(oai_image.folder))
else:
print("Segmenting {}".format(oai_image.preprocessed_image_file))
image = sitk.ReadImage(oai_image.preprocessed_image_file)
FC_probmap, TC_probmap = self.segmenter.segment(image, if_output_prob_map=True, if_output_itk=True)
sitk.WriteImage(FC_probmap, oai_image.FC_probmap_file)
sitk.WriteImage(TC_probmap, oai_image.TC_probmap_file)
def extract_surface_mesh(self, oai_image, overwrite=False,coord='nifti'):
"""Extract surface mesh of cartilages with thickness measurements"""
# oai_image.FC_mesh_file = os.path.join(oai_image.folder, "FC_mesh_world.ply")
# oai_image.TC_mesh_file = os.path.join(oai_image.folder, "TC_mesh_world.ply")
if (not overwrite) and os.path.isfile(oai_image.FC_mesh_file) and os.path.isfile(oai_image.TC_mesh_file):
print("{} and {} exits".format(oai_image.FC_mesh_file, oai_image.TC_mesh_file))
else:
get_cartilage_surface_mesh_from_segmentation_file((oai_image.FC_probmap_file, oai_image.TC_probmap_file),
save_path_FC=oai_image.FC_mesh_file,
save_path_TC=oai_image.TC_mesh_file,
thickness=True, prob=True, coord=coord,
)
pass
def register_image_to_atlas(self,oai_image,overwrite=False,gpu_id=0):
if self.use_nifti:
self.register_image_to_atlas_NiftyReg(oai_image,overwrite)
else:
self.register_image_to_atlas_AVSM(oai_image,overwrite,gpu_id=gpu_id)
def register_image_to_atlas_AVSM(self,oai_image,overwrite=False, gpu_id=0):
if (not overwrite) and os.path.isfile(oai_image.inv_transform_to_atlas):
print("{} exists; not recomputing.".format(oai_image.inv_transform_to_atlas))
else:
self.register.register_image(self.atlas_image_file, oai_image.preprocessed_image_file,
lmoving_path=None, ltarget_path=None,
gpu_id=gpu_id,oai_image=oai_image)
def register_image_to_atlas_NiftyReg(self, oai_image, overwrite=False):
"""
Register an oai_image to the atlas
:param oai_image: (OAIImage object)
:param eval: if evaluate the surface distance between the warped mesh and the atlas mesh
:param overwrite:
:return:
"""
# oai_image.affine_transform_file = os.path.join(oai_image.folder, "affine_transform_to_atlas.txt")
# oai_image.bspline_transform_file = os.path.join(oai_image.folder, "bspline_control_points_to_atlas.nii.gz")
if overwrite or (not os.path.isfile(oai_image.affine_transform_file)):
self.register.register_affine(self.atlas_image_file,
oai_image.preprocessed_image_file,
out_affine_file=oai_image.affine_transform_file,
**self.affine_config)
if overwrite or (not os.path.isfile(oai_image.bspline_transform_file)):
self.register.register_bspline(self.atlas_image_file, oai_image.preprocessed_image_file,
init_affine_file=oai_image.affine_transform_file,
output_control_point=oai_image.bspline_transform_file,
**self.bspline_config)
def warp_mesh(self, oai_image, overwrite=False, do_clean=False):
# oai_image.warped_FC_mesh = os.path.join(oai_image.folder, "FC_mesh_world_to_atlas.ply")
# oai_image.warped_TC_mesh = os.path.join(oai_image.folder, "TC_mesh_world_to_atlas.ply")
# oai_image.inv_transform_to_atlas = os.path.join(oai_image.folder, "inv_transform_to_atlas.nii.gz")
# generate inverse registration map
if overwrite or (not os.path.isfile(oai_image.inv_transform_to_atlas)):
self.register.invert_nonrigid(non_rigid_transform=oai_image.bspline_transform_file,
reference_image=self.atlas_image_file,
moving_image=oai_image.preprocessed_image_file,
inverted_transform=oai_image.inv_transform_to_atlas)
# warp meshes using the inverse map
if overwrite or (not os.path.isfile(oai_image.warped_FC_mesh_file)):
self.register.warp_mesh(oai_image.FC_mesh_file,
oai_image.inv_transform_to_atlas,
self.atlas_image_file,
oai_image.preprocessed_image_file,
oai_image.warped_FC_mesh_file,
inWorld=True,do_clean=False)
if overwrite or (not os.path.isfile(oai_image.warped_TC_mesh_file)):
self.register.warp_mesh(oai_image.TC_mesh_file,
oai_image.inv_transform_to_atlas,
self.atlas_image_file,
oai_image.preprocessed_image_file,
oai_image.warped_TC_mesh_file,
inWorld=True,do_clean=do_clean)
def eval_registration_surface_distance(self, oai_image):
# messure the surface distance between the warped mesh and the atlas mesh
dist_max_FC, dist_min_FC, dist_median_FC, dist_95p_FC = surface_distance(oai_image.warped_FC_mesh_file, self.atlas_FC_mesh_file)
dist_max_TC, dist_min_TC, dist_median_TC, dist_95p_TC = surface_distance(oai_image.warped_TC_mesh_file, self.atlas_TC_mesh_file)
print("{} distance eval(mm):".format(oai_image.name))
print("FC distance: max:{:.4f}, min:{:.4f}, median:{:.4f}, 95 percent {:.4f}".format(dist_max_FC, dist_min_FC, dist_median_FC,
dist_95p_FC))
print("TC distance: max:{:.4f}, min:{:.4f}, median:{:.4f}, 95 percent {:.4f}".format(dist_max_TC, dist_min_TC, dist_median_TC,
dist_95p_TC))
self.surface_distance_FC.append(np.array([[dist_max_FC, dist_min_FC,dist_median_FC, dist_95p_FC]]))
self.surface_distance_TC.append(np.array([[dist_max_TC, dist_min_TC,dist_median_TC, dist_95p_TC]]))
def get_surface_distances_eval(self):
FC_distances = np.vstack(self.surface_distance_FC)
TC_distances = np.vstack(self.surface_distance_TC)
FC_means = FC_distances.mean(axis=0)
FC_std = FC_distances.std(axis=0)
TC_means = TC_distances.mean(axis=0)
TC_std = TC_distances.std(axis=0)
print("FC distance(mm): max:{:.4f} +/- {:.4f}, min:{:.4f} +/- {:.4f}, median:{:.4f} +/- {:.4f}, 95 percent {} +/- {}".format(
*[metric[i] for i in range(4) for metric in [FC_means, FC_std]]))
print("TC distance(mm): max:{:.4f} +/- {:.4f}, min:{:.4f} +/- {:.4f}, median:{:.4f} +/- {:.4f}, 95 percent {} +/- {}".format(
*[metric[i] for i in range(4) for metric in [TC_means, TC_std]]))
def project_thickness_to_atlas(self, oai_image, overwrite=False):
"""
use the inverse registration map to warp the oai_image mesh to atlas space
and project the thickness to the atlas mesh
"""
# setup paths of files to be generated
# oai_image.FC_thickness_mapped_to_atlas_mesh = os.path.join(oai_image.folder, "atlas_FC_mesh_with_thickness.ply")
# oai_image.TC_thickness_mapped_to_atlas_mesh = os.path.join(oai_image.folder, "atlas_TC_mesh_with_thickness.ply")
# map the thickness on the warped meshes to the atlas meshes
map_thickness_to_atlas_mesh(self.atlas_FC_mesh_file, oai_image.warped_FC_mesh_file, oai_image.FC_thickness_mapped_to_atlas_mesh)
map_thickness_to_atlas_mesh(self.atlas_TC_mesh_file, oai_image.warped_TC_mesh_file, oai_image.TC_thickness_mapped_to_atlas_mesh)
def project_thickness_to_2D(self, oai_image, overwrite=False):
"""
TODO: implement the method to project thickness from 3D mesh to 2D grid,
and save the file to oai_image.FC_2D_thickness_grid and oai_image.TC_2D_thickness_grid
"""
map_thickness_to_2D_projection(oai_image.FC_thickness_mapped_to_atlas_mesh, self.atlas_FC_2D_map_file, oai_image.FC_2D_thickness_grid,name='FC_2D_map',overwrite=overwrite)
map_thickness_to_2D_projection(oai_image.TC_thickness_mapped_to_atlas_mesh, self.atlas_TC_2D_map_file, oai_image.TC_2D_thickness_grid,name='TC_2D_map',overwrite=overwrite)
def preprocess_parallel(self, image_list, n_workers=10, overwrite=False):
with Pool(processes=n_workers) as pool:
res = pool.map(partial(self.preprocess, overwrite=overwrite), image_list)
def analyze_single_image(self, image, overwrite=False):
self.preprocess(image, overwrite=overwrite)
self.segment_image_and_save_results(image, overwrite=overwrite)
self.close_segmenter()
self.extract_surface_mesh(image, overwrite=overwrite)
self.register_image_to_atlas_NiftyReg(image, overwrite=overwrite)
self.warp_mesh(image, overwrite=overwrite)
self.project_thickness_to_atlas(image, overwrite=overwrite)
# TODO self.project_thickness_to_2D(image, overwrite=overwrite)
def analyze_multiple_images(self, images, n_workers=10, overwrite=False):
self.preprocess_parallel(images, n_workers=n_workers, overwrite=overwrite)
for image in images:
self.segment_image_and_save_results(image, overwrite=False)
self.close_segmenter()
for image in images:
self.extract_surface_mesh(image, overwrite=overwrite)
self.register_image_to_atlas_NiftyReg(image, overwrite=overwrite)
self.warp_mesh(image, overwrite=overwrite)
self.project_thickness_to_atlas(image, overwrite=overwrite)