-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharguments.py
24 lines (22 loc) · 1.03 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import argparse
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", default='multidigitnet.model',
help="path to save model file. default is 'multidigitnet.model'")
ap.add_argument("-e", "--epoch", type=int, default=1,
help="number of epochs to train default is 1")
ap.add_argument("-s", "--save",default='H.npz',
help="path to save performance data. default is 'H.npz'")
ap.add_argument("-i", "--input",required=True,
help="path to image file in .npz format'")
ap.add_argument("-r", "--train", type=int, default=10000,
help="number of training sample to use - default is 10000")
ap.add_argument("-t", "--test", type=int, default=5000,
help="number of test samples to use - default is 5000")
ap.add_argument("-d", "--dense", type=int, default=128,
help="number of connections in Dense-1 - default is 128")
ap.add_argument("-l", "--lrate", type=float, default=0.01,
help="learning rate - default is 0.01")
args = vars(ap.parse_args())
print("[INPUT PARAMETERS]")
for (i,k) in enumerate(args):
print("\t{}\t{}".format(k,args[k]))