-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.c
769 lines (667 loc) · 21.1 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
/*
* clockperf
*
* Copyright (c) 2016-2021, Steven Noonan <steven@uplinklabs.net>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "prefix.h"
#include "affinity.h"
#include "clock.h"
#include "drift.h"
#include "util.h"
#include "version.h"
#ifdef _MSC_VER
#define strcasecmp stricmp
#define strncasecmp strnicmp
#endif
#include <getopt.h>
/*
* We run tests in pairs of clocks, attempting to corroborate the first clock
* with the results of the second clock. If there's too much mismatch between
* the two, then a warning is printed.
*/
static struct clockspec clock_sources[] = {
/* Characterizes overhead of measurement mechanism. */
//{CPERF_NONE, 0},
#ifdef HAVE_CPU_CLOCK
{CPERF_TSC, 0},
#endif
#ifdef HAVE_GETTIMEOFDAY
{CPERF_GTOD, 0},
#endif
#ifdef HAVE_MACH_TIME
{CPERF_MACH_TIME, 0},
#endif
#ifdef HAVE_CLOCK_GETTIME
{CPERF_GETTIME, CLOCK_REALTIME},
#ifdef CLOCK_REALTIME_COARSE
{CPERF_GETTIME, CLOCK_REALTIME_COARSE},
#endif
#ifdef CLOCK_MONOTONIC
{CPERF_GETTIME, CLOCK_MONOTONIC},
#endif
#ifdef CLOCK_MONOTONIC_COARSE
{CPERF_GETTIME, CLOCK_MONOTONIC_COARSE},
#endif
#ifdef CLOCK_MONOTONIC_RAW
{CPERF_GETTIME, CLOCK_MONOTONIC_RAW},
#endif
#ifdef CLOCK_MONOTONIC_RAW_APPROX // OS X
{CPERF_GETTIME, CLOCK_MONOTONIC_RAW_APPROX},
#endif
#ifdef CLOCK_BOOTTIME
{CPERF_GETTIME, CLOCK_BOOTTIME},
#endif
#ifdef CLOCK_UPTIME_RAW // OS X
{CPERF_GETTIME, CLOCK_UPTIME_RAW},
#endif
#ifdef CLOCK_UPTIME_RAW_APPROX // OS X
{CPERF_GETTIME, CLOCK_UPTIME_RAW_APPROX},
#endif
#ifdef CLOCK_PROCESS_CPUTIME_ID
{CPERF_GETTIME, CLOCK_PROCESS_CPUTIME_ID},
#endif
#ifdef CLOCK_THREAD_CPUTIME_ID
{CPERF_GETTIME, CLOCK_THREAD_CPUTIME_ID},
#endif
#endif
#ifdef HAVE_CLOCK
{CPERF_CLOCK, 0},
#endif
#ifdef HAVE_GETRUSAGE
{CPERF_RUSAGE, 0},
#endif
#ifdef HAVE_FTIME
{CPERF_FTIME, 0},
#endif
#ifdef HAVE_TIME
{CPERF_TIME, 0},
#endif
#ifdef TARGET_OS_WINDOWS
{CPERF_QUERYPERFCOUNTER, 0},
{CPERF_GETTICKCOUNT, 0},
{CPERF_GETTICKCOUNT64, 0},
{CPERF_TIMEGETTIME, 0},
{CPERF_GETSYSTIME, 0},
#if _WIN32_WINNT >= 0x0602
{CPERF_GETSYSTIMEPRECISE, 0},
#endif
{CPERF_UNBIASEDINTTIME, 0},
#endif
{CPERF_NULL, 0},
};
static int compare_double(const void *pa, const void *pb)
{
double a = *(double *)pa,
b = *(double *)pb;
if (a < b)
return -1;
if (a > b)
return 1;
return 0;
}
static void calc_error(double *times, uint32_t samples, double *mean, double *error)
{
double T;
double sum, variance, deviation, sem;
size_t i;
switch (samples-1) {
case 1: T = 12.71; break;
case 2: T = 4.303; break;
case 3: T = 3.182; break;
case 4: T = 2.776; break;
case 5: T = 2.571; break;
case 6: T = 2.447; break;
case 7: T = 2.365; break;
case 8: T = 2.306; break;
case 9: T = 2.262; break;
case 10: T = 2.228; break;
case 11: T = 2.201; break;
case 12: T = 2.179; break;
case 13: T = 2.160; break;
case 14: T = 2.145; break;
case 15: T = 2.131; break;
case 16: T = 2.120; break;
case 17: T = 2.110; break;
case 18: T = 2.101; break;
case 19: T = 2.093; break;
case 20: T = 2.086; break;
case 21: T = 2.080; break;
case 22: T = 2.074; break;
case 23: T = 2.069; break;
case 24: T = 2.064; break;
case 25: T = 2.060; break;
case 26: T = 2.056; break;
case 27: T = 2.052; break;
case 28: T = 2.048; break;
case 29: T = 2.045; break;
case 30: T = 2.042; break;
case 190:
case 191:
case 192:
case 193:
case 194:
case 195:
case 196:
case 197:
case 198:
case 199:
case 200:
T = 1.960;
break;
default:
printf("Don't know how to deal with statistics for %u samples\n", samples);
abort();
break;
}
qsort(times, samples, sizeof(double), compare_double);
sum = 0.0;
for (i = 0; i < samples; i++) {
sum += times[i];
}
*mean = sum / (double)samples;
variance = 0.0;
for (i = 0; i < samples; i++)
variance += (times[i] - *mean) * (times[i] - *mean);
variance /= (double)(samples - 1);
deviation = sqrt(variance);
sem = T * (deviation / sqrt((double)samples));
*error = sem / *mean * 100.0;
}
static int range_intersects(double m1, double e1, double m2, double e2)
{
/* Turn error % into literal values, then test for range intersection. */
e1 = m1 * (e1 / 100.0);
e2 = m2 * (e2 / 100.0);
return !(m1 + e1 < m2 - e2 || m2 + e2 < m1 - e1);
}
const char *rate_suffixes[] = { "Hz", "KHz", "MHz", "GHz", NULL };
static const char *pretty_print(char *buffer, size_t bufsz, double v,
const char **suffixes, uint32_t bar)
{
const char **suffix = suffixes;
if (v < 0) {
buffer[0] = 0;
return buffer;
}
while (v >= bar * 1000.0 && suffix[1]) {
v /= 1000.0;
suffix++;
}
snprintf(buffer, bufsz, "%.0lf%s", v, *suffix);
return buffer;
}
const uint32_t ITERS = 1000;
static void clock_compare(const struct clockspec self, const struct clockspec other)
{
static double overhead = 0.0;
uint32_t i, j;
uint32_t ticks = 0, reads = 0, backwards = 0, jumps = 0, stalls = 0, failures = 0;
uint64_t s[2], o[2], t[2];
char strbuf[2][16];
long long delta;
uint64_t observed_res = (uint64_t)-1;
double *cost_self, *cost_other;
double cost_self_mean, cost_self_error, cost_other_mean, cost_other_error;
uint32_t samples = 4;
if (clock_read(self, &t[0]) != 0) {
printf("Failed to read from clock '%s' (%u, %u)\n",
clock_name(self), self.major, self.minor);
return;
}
if (clock_read(other, &t[0]) != 0) {
printf("Failed to read from clock '%s' (%u, %u)\n",
clock_name(other), other.major, other.minor);
return;
}
/* To make GCC shut up about "possibly uninitialized" variables */
s[0] = s[1] = 0;
o[0] = o[1] = 0;
t[0] = t[1] = 0;
baseline:
clock_read(other, &o[0]);
/*
* Wait for one tick.
*/
clock_read(self, &t[0]);
t[1] = t[0];
while (t[1] == t[0])
clock_read(self, &t[0]);
/*
* Measure time between ticks.
*/
reads = 0;
ticks = samples * 2;
clock_read(other, &o[0]);
clock_read(self, &t[1]);
for (j = 0; j < ticks; j++) {
/*
* Read clock until it ticks.
*/
t[0] = t[1];
while (t[1] == t[0]) {
clock_read(self, &t[1]);
reads++;
}
/*
* We now have a time delta from this clock which we can use to infer
* resolution.
*/
delta = t[1] - t[0];
if (delta > 0 && (uint64_t)delta < observed_res)
observed_res = delta;
/*
* If the clock is taking too long per tick, we don't want to sit here
* for the entire 'ticks' time.
*/
if (delta > 1e8) {
ticks = j + 1;
break;
}
}
clock_read(other, &o[1]);
delta = o[1] - o[0];
/*
* Baseline the clock for at least 10ms.
*/
if (delta < 1e7) {
samples *= 2;
goto baseline;
}
delta /= ticks;
/*
* Clamp to either 30 or 200.
*/
samples = (uint32_t)fmax(30.0, 1e6 / observed_res);
if (samples > 200)
samples = 200;
else if (samples > 30)
samples = 30;
cost_self = malloc(sizeof(double) * samples);
cost_other = malloc(sizeof(double) * samples);
if (reads == ticks) {
/*
* We got a distinct value on every read, so we cannot meaningfully
* measure the resolution of this clock.
*/
observed_res = 0;
}
ticks = 0;
reads = 0;
for (j = 0; j < samples; j++) {
uint32_t sample_reads = 0;
/* "Warm" the two clocks up */
clock_read(other, &o[1]);
clock_read(self, &s[1]);
/* Begin timespan measurement */
clock_read(other, &o[0]);
clock_read(self, &s[0]);
for (i = 0; i < ITERS; i++) {
uint32_t iter_reads = 1;
clock_read(self, &t[0]);
/*
* Clocks with a low resolution or without a monotonicity guarantee can
* return the same value multiple times in a row. Read the clock until
* it changes.
*/
t[1] = t[0];
while (t[1] == t[0] && iter_reads < 200) {
clock_read(self, &t[1]);
iter_reads++;
}
delta = t[1] - t[0];
if (delta == 0)
/*
* Clock didn't advance in over 200 reads! Really terrible clock.
*/
failures++;
else if (iter_reads > 2)
/*
* Clock advanced but not monotonically.
*/
stalls++;
/*
* Under virtualization some clocks can jump backwards due to the
* hypervisor trying to overcorrect for lost time in rescheduling. We
* detect that here and record it.
*/
if (delta < 0)
backwards++;
/*
* It's also possible for the clock to jump forward by a large step,
* either due to hypervisor overcorrection, or not being
* a monotonic clock source.
*/
if (delta > 1000000LL)
jumps++;
sample_reads += iter_reads;
}
clock_read(other, &o[1]);
clock_read(self, &s[1]);
cost_self[j] = (double)(s[1] - s[0]) / (double)sample_reads;
cost_other[j] = (double)(o[1] - o[0]) / (double)sample_reads;
reads += sample_reads;
}
calc_error(cost_self, samples, &cost_self_mean, &cost_self_error);
calc_error(cost_other, samples, &cost_other_mean, &cost_other_error);
/* If we're measuring CPERF_NONE, then we're attempting to detect
* measurement overhead.
*/
if (self.major == CPERF_NONE) {
/* Assume best case overhead. */
overhead = cost_other_mean - (cost_other_mean * (cost_other_error / 100.0));
printf("%-20s %7.2lf %7.2lf%%\n",
"(overhead)", cost_other_mean, cost_other_error);
goto cleanup;
}
cost_self_mean -= overhead;
cost_other_mean -= overhead;
if (observed_res > 0)
pretty_print(strbuf[0], sizeof(strbuf[0]), 1e9 / observed_res, rate_suffixes, 10);
else
strcpy(strbuf[0], "----");
printf("%-20s %7.2lf %7.2lf%% %8s %5s %5d %5d %5d %5d\n",
clock_name(self), cost_other_mean, cost_other_error,
strbuf[0],
(!stalls && !backwards && !jumps && !failures) ? "Yes" : "No",
failures / samples, jumps / samples, stalls / samples, backwards / samples);
if ((!range_intersects(cost_self_mean, cost_self_error * 2,
cost_other_mean, cost_other_error * 2)
|| cost_self_error > 10.0)
&& cost_self_mean >= __FLT_EPSILON__)
{
printf("%-20s %7.2lf %7.2lf%%\n",
"", cost_self_mean, cost_self_error);
}
cleanup:
free(cost_self);
free(cost_other);
}
#if 0
#if defined(TARGET_CPU_X86_64) || defined(TARGET_CPU_X86)
static int cpuid(uint32_t *_regs)
{
#ifdef TARGET_COMPILER_MSVC
__cpuidex(_regs, _regs[0], _regs[2]);
#else
#ifdef TARGET_CPU_X86
static int cpuid_support = 0;
if (!cpuid_support) {
uint32_t pre_change, post_change;
const uint32_t id_flag = 0x200000;
asm ("pushfl\n\t" /* Save %eflags to restore later. */
"pushfl\n\t" /* Push second copy, for manipulation. */
"popl %1\n\t" /* Pop it into post_change. */
"movl %1,%0\n\t" /* Save copy in pre_change. */
"xorl %2,%1\n\t" /* Tweak bit in post_change. */
"pushl %1\n\t" /* Push tweaked copy... */
"popfl\n\t" /* ... and pop it into %eflags. */
"pushfl\n\t" /* Did it change? Push new %eflags... */
"popl %1\n\t" /* ... and pop it into post_change. */
"popfl" /* Restore original value. */
: "=&r" (pre_change), "=&r" (post_change)
: "ir" (id_flag));
if (((pre_change ^ post_change) & id_flag) == 0)
return 1;
cpuid_support = 1;
}
#endif
asm volatile(
"cpuid"
: "=a" (_regs[0]),
"=b" (_regs[1]),
"=c" (_regs[2]),
"=d" (_regs[3])
: "0" (_regs[0]), "2" (_regs[2]));
#endif
return 0;
}
#endif
/*
* int have_invariant_tsc(void)
*
* returns nonzero if CPU has invariant TSC
*/
static int have_invariant_tsc(void)
{
static int ret = -1;
if (ret != -1)
return ret;
ret = 0;
#if defined(TARGET_CPU_X86) || defined(TARGET_CPU_X86_64)
{
uint32_t regs[4];
char vendor[13];
memset(regs, 0, sizeof(regs));
if (cpuid(regs)) {
/* CPUID couldn't be queried */
return ret;
}
vendor[12] = 0;
*(uint32_t *)(&vendor[0]) = regs[1];
*(uint32_t *)(&vendor[4]) = regs[3];
*(uint32_t *)(&vendor[8]) = regs[2];
if (!strcmp(vendor, "GenuineIntel") ||
!strcmp(vendor, "AuthenticAMD")) {
memset(regs, 0, sizeof(regs));
regs[0] = 0x80000000;
cpuid(regs);
if (regs[0] >= 0x80000007) {
memset(regs, 0, sizeof(regs));
regs[0] = 0x80000007;
cpuid(regs);
ret = (regs[3] & 0x100) ? 1 : 0;
}
}
}
#endif
return ret;
}
#endif
static void version(void)
{
printf("clockperf v%s\n\n", clockperf_version_long());
}
static void usage(const char *argv0)
{
printf("usage:\n");
printf(" %s [--drift [clocksource] | --monitor [clocksource]] [--ref reference-clocksource]\n", argv0);
printf(" %s --list\n", argv0);
}
/* Argh: https://stackoverflow.com/questions/1052746/getopt-does-not-parse-optional-arguments-to-parameters */
#define FIX_OPTARG() do { \
if(!optarg \
&& optind < argc /* make sure optind is valid */ \
&& NULL != argv[optind] /* make sure it's not a null string */ \
&& '\0' != argv[optind][0] /* ... or an empty string */ \
&& '-' != argv[optind][0] /* ... or another option */ \
) { \
/* update optind so the next getopt_long invocation skips argv[optind] */ \
optarg = argv[optind++]; \
} \
} while(0);
/* < 0 do all drift tests
* 0 do no drift tests
* > 0 do drift test for specific clock
*/
static int do_drift;
static int do_monitor;
static int do_list;
static int ref_index;
int main(int argc, char **argv)
{
int i;
struct clockspec *p;
version();
while (1) {
static struct option long_options[] = {
{"version", no_argument, 0, 'v'},
{"help", no_argument, 0, 'h'},
{"drift", optional_argument, 0, 'd'},
{"monitor", optional_argument, 0, 'm'},
{"ref", optional_argument, 0, 'r'},
{"list", optional_argument, 0, 'l'},
{0, 0, 0, 0}
};
int c, option_index = 0;
c = getopt_long(argc, argv, "vhd:l", long_options, &option_index);
if (c == -1)
break;
switch (c) {
case 0:
break;
case 'd':
case 'm':
case 'r':
{
int v = -1;
FIX_OPTARG();
if (optarg) {
/* Find matching clock */
for (i = 0, p = clock_sources; p->major != CPERF_NULL; i++, p++) {
const char *name = clock_name(*p);
if (strcasecmp(optarg, name) == 0) {
/* exact match, we're done. */
v = i + 1;
break;
}
if (strncasecmp(optarg, name, strlen(optarg)) == 0) {
/* partial match, keep going in case there's an exact one. */
v = i + 1;
}
}
if (v == -1) {
/* no matches, but an argument was provided. */
printf("error: could not find clock named '%s'\n", optarg);
return 1;
}
}
if (c == 'd')
do_drift = v;
else if (c == 'm')
do_monitor = v;
else if (c == 'r')
ref_index = v;
}
break;
case 'l':
do_list = 1;
break;
case 'v':
/* We already printed the version. Only print the license. */
license();
return 0;
case 'h':
case '?':
default:
usage(argv[0]);
return 0;
}
}
timers_init();
thread_init();
cpu_clock_init();
cpu_clock_calibrate();
#ifdef HAVE_DRIFT_TESTS
if (do_drift)
drift_init();
#endif
#if 0
printf("Invariant TSC: %s\n\n", have_invariant_tsc() ? "Yes" : "No");
#endif
if (do_list) {
printf("== Clocksources Supported in This Build ==\n\n");
for (p = clock_sources; p->major != CPERF_NULL; p++) {
printf("%-22s\n",
clock_name(*p));
}
printf("\n");
return 0;
}
if (do_drift <= 0 && !do_monitor) {
printf("== Reported Clock Frequencies ==\n\n");
for (p = clock_sources; p->major != CPERF_NULL; p++) {
uint64_t res;
char buf[16];
if (clock_resolution(*p, &res) != 0)
continue;
printf("%-22s %s\n",
clock_name(*p),
pretty_print(buf, sizeof(buf), (double)res, rate_suffixes, 10));
}
printf("\n\n");
printf("== Clock Behavior Tests ==\n\n");
printf("Name Cost(ns) +/- Resol Mono Fail Warp Stal Regr\n");
for (p = clock_sources; p->major != CPERF_NULL; p++) {
clock_choose_ref(*p);
clock_compare(*p, ref_clock);
}
printf("\n\n");
}
if (do_drift) {
printf("== Clock Drift Tests ==\n");
#ifdef HAVE_DRIFT_TESTS
for (i = 0, p = clock_sources; p->major != CPERF_NULL; i++, p++) {
if (do_drift > 0 && i != do_drift - 1)
continue;
if (ref_index > 0 && do_drift > 0)
clock_set_ref(clock_sources[ref_index - 1]);
else
clock_choose_ref(*p);
printf("\n%9s: %s\n%9s: %s\n",
"Primary", clock_name(*p),
"Reference", clock_name(ref_clock));
drift_run(do_drift > 0 ? 60000 : 10000, *p, ref_clock);
}
#else
printf("error: support for clock drift tests is not compiled in to this build\n");
#endif
}
if (do_monitor) {
uint64_t base_values[CPERF_NUM_CLOCKS];
uint64_t current_values[CPERF_NUM_CLOCKS];
uint64_t wall_time_base, wall_time;
printf("== Monitoring Raw Clock Values ==\n");
// Read values once to get base values
for (i = 0, p = clock_sources; p->major != CPERF_NULL; i++, p++) {
if (clock_read(*p, &base_values[i]))
base_values[i] = ~0ULL;
}
// Choose a wall clock for reference
if (ref_index > 0)
clock_set_ref(clock_sources[ref_index - 1]);
else
clock_choose_ref_wall();
clock_read(ref_clock, &wall_time_base);
do {
clock_read(ref_clock, &wall_time);
printf("Elapsed: %" PRIu64" ms\n", (wall_time - wall_time_base) / 1000000);
for (i = 0, p = clock_sources; p->major != CPERF_NULL; i++, p++) {
if (do_monitor > 0 && i != do_monitor - 1)
continue;
clock_read(*p, ¤t_values[i]);
printf("%22s: +%-20" PRIu64 " ms (%-20" PRIu64 " ms)\n", clock_name(*p),
(current_values[i] - base_values[i]) / 1000000,
current_values[i] / 1000000);
}
printf("\n");
// 1000ms
thread_sleep(1000 * 1000);
} while (1);
}
timers_destroy();
return 0;
}
/* vim: set ts=4 sts=4 sw=4 et: */