-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_nuclei.py
161 lines (123 loc) · 5.94 KB
/
eval_nuclei.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import json
import numpy as np
def calculate_centroid(points):
"""
Calculate the centroid of a polygon given its points.
Points should be a list of [x, y] coordinates.
"""
points = np.array(points)
centroid = np.mean(points, axis=0)
return centroid
def extract_features_from_json(json_data, json_name):
features_list = []
for polygon_data in json_data.get('polygons', []):
category = polygon_data['name']
score = polygon_data.get('score', 1) # if no probability is given, assume 1 and matching will be done by distance
path_points = polygon_data['path_points']
if len(path_points) < 3:
continue # A valid polygon needs at least 3 points
exterior_coords = [coord[:2] for coord in path_points]
centroid = calculate_centroid(exterior_coords)
features_list.append({
'filename': json_name,
'category': category,
'centroid': centroid.tolist(), # Convert to list for easier JSON handling
'score': score
})
return features_list
def process_json_file(json_file_path):
json_name = os.path.basename(json_file_path)
with open(json_file_path, 'r') as f:
json_data = json.load(f)
features = extract_features_from_json(json_data, json_name)
return features
def calculate_centroid_distance(gt_features, pred_features):
results = []
pred_structure = {}
# Organize pred_features into a dictionary (pred_structure) for faster access
for pred_feature in pred_features:
match_key = pred_feature['category']
if match_key not in pred_structure:
pred_structure[match_key] = []
pred_structure[match_key].append(pred_feature)
for gt_feature in gt_features:
match_key = gt_feature['category']
eligible_predictions = []
# Check if there are predictions matching the same filename and category
if match_key in pred_structure:
for pred_feature in pred_structure[match_key]:
# Calculate the Euclidean distance between ground truth and prediction centroids
distance = np.linalg.norm(np.array(gt_feature['centroid']) - np.array(pred_feature['centroid']))
# Filter predictions based on a distance threshold (e.g., 15 units)
if distance < 15:
eligible_predictions.append({
'pred_json': pred_feature['filename'],
'gt_category': gt_feature['category'],
'pred_category': pred_feature['category'],
'distance': distance,
'pred_score': pred_feature['score'],
'pred_feature': pred_feature,
})
# Sort eligible predictions by descending prediction score and ascending distance
eligible_predictions.sort(key=lambda x: (-x['pred_score'], x['distance']))
# If we have any eligible prediction, take the best match
if eligible_predictions:
best_match = eligible_predictions[0]
results.append(best_match)
# Find and remove the used prediction from pred_structure
for i, pred in enumerate(pred_structure[match_key]):
if np.array_equal(pred['centroid'], best_match['pred_feature']['centroid']):
del pred_structure[match_key][i]
break
return results
def calculate_classification_metrics(results, gt_features, pred_features):
# Extract true positive categories (matched predictions)
pred_tp = [match['pred_category'] for match in results]
# Ground truth categories
ground_truth = [feature['category'] for feature in gt_features]
# All predicted categories
pred_all = [feature['category'] for feature in pred_features]
# Count occurrences of each category in ground truth, predictions, and true positives
gt_dict = dict(zip(*np.unique(ground_truth, return_counts=True)))
pred_dict = dict(zip(*np.unique(pred_all, return_counts=True)))
tp_dict = dict(zip(*np.unique(pred_tp, return_counts=True)))
micro_TP, micro_FP, micro_FN = 0, 0, 0
results_metrics = {}
# Calculate metrics for each category
for category in np.unique(list(gt_dict.keys()) + list(pred_dict.keys())):
TP = tp_dict.get(category, 0)
FP = pred_dict.get(category, 0) - TP
FN = gt_dict.get(category, 0) - TP
micro_TP += TP
micro_FP += FP
micro_FN += FN
precision = TP / (TP + FP) if TP + FP > 0 else 0
recall = TP / (TP + FN) if TP + FN > 0 else 0
f1_score = 2 * precision * recall / (precision + recall) if precision + recall > 0 else 0
results_metrics[category] = {
'TP': TP, 'FP': FP, 'FN': FN,
'precision': precision, 'recall': recall, 'f1_score': f1_score
}
# Calculate micro metrics (aggregated across categories)
micro_precision = micro_TP / (micro_TP + micro_FP) if micro_TP + micro_FP > 0 else 0
micro_recall = micro_TP / (micro_TP + micro_FN) if micro_TP + micro_FN > 0 else 0
micro_f1_score = 2 * micro_precision * micro_recall / (
micro_precision + micro_recall) if micro_precision + micro_recall > 0 else 0
# Calculate macro F1 (average of F1 scores per category)
macro_f1_score = np.mean([metrics['f1_score'] for metrics in results_metrics.values()])
results_metrics['micro'] = {
'precision': micro_precision,
'recall': micro_recall,
'f1_score': micro_f1_score
}
results_metrics['macro'] = {
'f1_score': macro_f1_score
}
return results_metrics
def evaluate_files(ground_truth_file, pred_file):
gt_features = process_json_file(ground_truth_file)
pred_features = process_json_file(pred_file)
results = calculate_centroid_distance(gt_features, pred_features)
metrics = calculate_classification_metrics(results, gt_features, pred_features)
return metrics