-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsoftcore_setup.py
executable file
·549 lines (456 loc) · 21.7 KB
/
softcore_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
#!/usr/bin/env python
#
# Postprocesses a prmtop/rst for use with softcore TI in AMBER 10 (or later, hopefully)
#
# Thomas T. Joseph <thomas.joseph@mssm.edu>
import sys
import re
import os
import subprocess
import string
class Error(Exception):
pass
def validate(condition, msg="Argh!"):
"""If condition is False, aborts the program with the specified message."""
if not condition:
raise Error(msg)
def float3(val):
"""Converts to float, rounding to 3 decimal places. Used for coercing rst files into
PDB-level precision to avoid problems with finding softcore regions due to rounding."""
return round(float(val), 3)
class AmberSystem:
# POINTERS block indices, stolen from the prmtop format spec on ambermd.org
NATOM = 0 # total number of atoms
NTYPES = 1 # total number of distinct atom types
NBONH = 2 # number of bonds containing hydrogen
MBONA = 3 # number of bonds not containing hydrogen
NTHETH = 4 # number of angles containing hydrogen
MTHETA = 5 # number of angles not containing hydrogen
NPHIH = 6 # number of dihedrals containing hydrogen
MPHIA = 7 # number of dihedrals not containing hydrogen
NHPARM = 8 # currently not used
NPARM = 9 # currently not used
NEXT = 10 # number of excluded atoms
NRES = 11 # number of residues
NBONA = 12 # MBONA + number of constraint bonds
NTHETA = 13 # MTHETA + number of constraint angles
NPHIA = 14 # MPHIA + number of constraint dihedrals
NUMBND = 15 # number of unique bond types
NUMANG = 16 # number of unique angle types
NPTRA = 17 # number of unique dihedral types
NATYP = 18 # number of atom types in parameter file, see SOLTY below
NPHB = 19 # number of distinct 10-12 hydrogen bond pair types
IFPERT = 20 # set to 1 if perturbation info is to be read in
NBPER = 21 # number of bonds to be perturbed
NGPER = 22 # number of angles to be perturbed
NDPER = 23 # number of dihedrals to be perturbed
MBPER = 24 # number of bonds with atoms completely in perturbed group
MGPER = 25 # number of angles with atoms completely in perturbed group
MDPER = 26 # number of dihedrals with atoms completely in perturbed groups
IFBOX = 27 # set to 1 if standard periodic box, 2 when truncated octahedral
NMXRS = 28 # number of atoms in the largest residue
IFCAP = 29 # set to 1 if the CAP option from edit was specified
def __init__(self, prmtop_filename, rst_filename=None):
"""Initializes this instance with AMBER prmtop and rst files."""
self.blocks = {}
self.block_list = []
self.formats = {}
self.format_strings = {}
self.x, self.y, self.z = [], [], []
self.box = None
self.load_prmtop(prmtop_filename)
if rst_filename is not None:
self.load_rst(rst_filename)
def load_prmtop(self, filename):
"""Loads an AMBER prmtop file into this instance."""
# These regular expressions are used in parsing FLAG and FORMAT lines
block_name_re = re.compile('%FLAG\s+(\w+)')
self.format_re = re.compile('%FORMAT\((\d+)(.)([\d\.]+)')
# Read header line, TODO check version of file
fp = open(filename, "r")
self.header = fp.readline()
# Read first line first
line = fp.readline()
while True:
if line == "": break
name = block_name_re.match(line).groups()[0]
line = fp.readline()
validate(line != "", "%s truncated after %%FLAG card." % filename)
format = self.format_re.match(line).groups()
tokens_per_line = int(format[0])
token_type = format[1]
token_length = float(format[2])
self.formats[name] = (tokens_per_line, token_type, token_length)
self.format_strings[name] = line
self.new_block(name, line)
# Read lines until we get one that starts with %, which signifies
# a new block
line = fp.readline()
if line == "": break
while line[0] is not "%":
# Subtract 1 from length to ignore newline
for i in xrange(0, len(line) - 1, int(token_length)):
self.blocks[name].append(line[i:i + int(token_length)])
line = fp.readline()
if line == "": break
# Converts tokens to the correct type and saves them in arrays
# I: integer; a: alphanumeric; E: float
if token_type == "I":
self.blocks[name] = [int(x) for x in self.blocks[name]]
elif token_type == "E":
self.blocks[name] = [float(x) for x in self.blocks[name]]
def load_rst(self, filename):
"""Loads an AMBER restart file into this instance."""
assert 'POINTERS' in self.blocks, "POINTERS block missing - valid prmtop not loaded"
fp = open(filename, "r")
fp.readline() # Eat header line
coords_left = self.blocks['POINTERS'][AmberSystem.NATOM] * 3
validate(coords_left == int(string.split(fp.readline())[0]) * 3, \
"Number of atoms %d in %s differs from that specified in prmtop" \
% (coords_left, filename))
# There are 6 coordinates, 12 characters each per line
while coords_left > 0:
line = fp.readline()
self.x.append(float3(line[0:12]))
self.y.append(float3(line[12:24]))
self.z.append(float3(line[24:36]))
coords_left -= 3
if coords_left >= 3:
self.x.append(float3(line[36:48]))
self.y.append(float3(line[48:60]))
self.z.append(float3(line[60:72]))
coords_left -= 3
validate(coords_left == 0, \
"Number of coordinates read is not a multiple of 3: is %s corrupt?" % \
filename)
# If a box is specified in the prmtop, read it in
if self.blocks['POINTERS'][AmberSystem.IFBOX] != 0:
self.box = []
line = fp.readline()
self.box.append(float(line[0:12]))
self.box.append(float(line[12:24]))
self.box.append(float(line[24:36]))
self.box.append(float(line[36:48]))
self.box.append(float(line[48:60]))
self.box.append(float(line[60:72]))
def save_prmtop(self, filename):
"""Saves the prmtop part of this AmberSystem into a prmtop file."""
fp = open(filename, "w")
fp.write(self.header)
# Eases converting from Fortran to Python/C format specifiers
type_table = {'I': 'd', 'E': 'E', 'a': 's'}
# The following ugly code deals with printing tokens in the correct format
for name in self.block_list:
fp.write("%%FLAG %s\n" % name)
fp.write(self.format_strings[name])
format = self.format_re.match(self.format_strings[name]).groups()
tokens_per_line = int(format[0])
token_type = type_table[format[1]]
token_length = float(format[2])
token_length_int = int(token_length)
# Print x.y vs x length specifiers correctly
if float(token_length_int) == token_length:
token_length_dec = ""
else:
token_length_dec = "%.1f" % (token_length - token_length_int)
token_length_dec = token_length_dec[1:]
s = "%%%d%s%s" % (token_length_int, token_length_dec, token_type)
count = 0
for x in self.blocks[name]:
fp.write(s % x)
count += 1
if count % tokens_per_line == 0:
fp.write("\n")
if count % tokens_per_line != 0:
fp.write("\n")
fp.close()
def save_rst(self, filename):
"""Saves the coordinates and box information (if present) to a restart file."""
assert len(self.x) == len(self.y) == len(self.z)
fp = open(filename, "w")
# Write header
fp.write("Processed by softcore_setup.py\n")
fp.write("%6d\n" % len(self.x))
# Write coordinates
for i in xrange(len(self.x)):
fp.write("%12.7f" % self.x[i])
fp.write("%12.7f" % self.y[i])
fp.write("%12.7f" % self.z[i])
if i % 2 == 1: fp.write("\n")
if len(self.x) % 2 == 1: fp.write("\n")
if self.box is not None:
for n in self.box:
fp.write("%12.7f" % n)
fp.write("\n")
fp.close()
def save_pdb(self, sclist=None, filename=None):
"""Makes a PDB that LEaP will read back in without complaint. This
differs from ambpdb/ambmask in that it writes beta and occupancy fields
that are set to 1.0 if that atom is in sclist, and 0.0 if not.
This means:
- Don't mangle names (e.g. don't do 1H5' instead of H5'1)
- Use single quotes instead of asterisks
(which can be accomplished simply by not mangling the prmtop names)
- Insert a TER record after every MOLECULE
- Have an END record at the end, I guess
"""
if filename is not None:
fp = open(filename, "w")
else:
fp = sys.stdout
# Iterate over atoms and determine which residue
# it is in. Save this information in arrays.
residues = []
residue_counter = self.num_residues() - 1
for atom in xrange(self.num_atoms(), 0, -1):
residues.append(residue_counter + 1)
if atom == self.blocks['RESIDUE_POINTER'][residue_counter]:
residue_counter -= 1
residues.reverse()
# We count down the number of atoms in each molecule as we go so we
# can print TER records as needed
if 'ATOMS_PER_MOLECULE' in self.blocks:
have_molecules = True
current_molecule = 0
atoms_left = self.blocks['ATOMS_PER_MOLECULE'][current_molecule]
else:
have_molecules = False
# Print the ATOM records
for atom in xrange(self.num_atoms()):
atom_name = self.blocks['ATOM_NAME'][atom]
res_name = self.blocks['RESIDUE_LABEL'][residues[atom] - 1]
if sclist is not None and (atom + 1) in sclist:
is_softcore = 1.0
else:
is_softcore = 0.0
fp.write("ATOM %5d %4s %3s %4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" % \
(atom + 1, atom_name, res_name, residues[atom], \
self.x[atom], self.y[atom], self.z[atom], \
is_softcore, is_softcore))
# If there's a ATOMS_PER_MOLECULE block we know where to print the TERs
if have_molecules:
atoms_left -= 1
if atoms_left == 0:
fp.write("TER\n")
current_molecule += 1
if current_molecule < len(self.blocks['ATOMS_PER_MOLECULE']):
atoms_left = self.blocks['ATOMS_PER_MOLECULE'][current_molecule]
fp.write("END\n")
if filename is not None:
fp.close()
# The hash we are using to store the blocks does not maintain
# the order of the keys. We keep an ordered list
# of keys so when we save the prmtop the blocks will be in that order.
def new_block(self, name, format_string):
"""Creates a new prmtop block, setting up ancillary data structures as needed."""
if name not in self.blocks:
assert name not in self.block_list, \
"AmberSystem block_list inconsistent with blocks"
self.block_list.append(name)
self.blocks[name] = []
self.format_strings[name] = format_string
def residue_for_atom(self, atom):
"""Returns the residue number of a given atom index, or None if not
found."""
validate('RESIDUE_POINTER' in self.blocks, \
"No RESIDUE_POINTER block - Corrupt prmtop")
if atom < 1 or atom > self.num_atoms(): return None
for residue in xrange(len(self.blocks['RESIDUE_POINTER']), 0, -1):
if atom >= self.blocks['RESIDUE_POINTER'][residue - 1]:
return residue
raise Error("Bizarre residue boundaries - corrupt prmtop?")
def residues_for_atoms(self, atoms):
"""Returns a hash of residue numbers to the provided atom numbers."""
tmp = {}
for atom in atoms:
residue = self.residue_for_atom(atom)
if residue not in tmp:
tmp[residue] = [atom]
else:
tmp[residue].append(atom)
return tmp
def make_ambmask(self, atoms):
"""Converts a list of atoms into a more human-friendly ambmask string."""
atoms_by_residue = self.residues_for_atoms(atoms)
mask = ""
first_residue = True
for residue in atoms_by_residue:
if not first_residue: mask += " | "
first_residue = False
mask += ":%d@" % residue
atom_names = [self.blocks['ATOM_NAME'][i - 1].strip() for i in \
atoms_by_residue[residue]]
first_atom = True
for atom_name in sorted(atom_names):
if not first_atom: mask += ","
first_atom = False
mask += atom_name
return mask
def num_atoms(self):
"""Returns the number of atoms. Must have loaded a prmtop (with
load_prmtop)."""
validate('POINTERS' in self.blocks, "Corrupt prmtop")
return int(self.blocks['POINTERS'][AmberSystem.NATOM])
def num_residues(self):
"""Returns the number of residues."""
validate('POINTERS' in self.blocks, "Corrupt prmtop")
return int(self.blocks['POINTERS'][AmberSystem.NRES])
def ambmask_to_atom_list(prmtop, rst, ambmask):
"""Runs $AMBERHOME/bin/ambmask, extracts atom indices from its output, and
returns them as a list"""
executable = "%s/bin/ambmask" % os.environ['AMBERHOME']
if os.path.exists(executable) is False:
raise Error("ambmask executable not found. I checked" \
" %s. Did you set the AMBERHOME environment variable correctly?" \
% executable)
p = subprocess.Popen([executable, '-p', prmtop, '-c', rst, '-find', ambmask],
stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
out = p.communicate()[0]
if "Error" in out:
raise Error("There's an error in ambmask %s:\n\n%s" % (ambmask, out))
# Return the atom indices only
out = out.split('\n')
return [int(line[6:11]) for line in out if line[0:6] == 'ATOM ']
def display_usage():
print >>sys.stderr, """Usage:
To prepare a "perturbed" prmtop/rst for softcore TI:
softcore_setup.py <prmtop-A> <rst-A> <prmtop-B> <rst-B>
A and B refer to "unperturbed" and "perturbed" states.
New versions of <prmtop-B> and <rst-B> are generated, along with potentially
useful suggested parameters for sander.
To dump a PDB file to stdout (optionally with specified atoms marked):
softcore_setup.py <prmtop> <rst> ['ambmask']
You can edit the resulting PDB to create your "perturbed" structure,
and use LEaP's loadpdb and saveamberparm commands to create prmtop and
coordinate files to be further processed as below.
"""
def make_atom_table(s):
"""Returns a dict with a key for each atom, to make it easy to check whether
a structure contains an atom of a given name at a given position.
The key contains the atom name and xyz coordinates rounded to the nearest
tenth of an Angstrom."""
table = {}
for i in xrange(s.num_atoms()):
key = "%4s%.1f,%.1f,%.1f" % (s.blocks['ATOM_NAME'][i], s.x[i], s.y[i], s.z[i])
table[key] = i + 1
return table
def sclist_too_big_error(sclist, prmtop):
"""Convenience method to print an error when one of the softcore regions is very big, which
more likely than not indicates that the structures are totally wrong or messed up"""
# print >>sys.stderr, sorted(sclist)
raise Error("Predicted a suspiciously large softcore region of %d atoms in %s.\n" \
"Please check that your structures have the same coordinates except for the\n" \
"softcore regions." % (len(sclist), prmtop))
def check_block_exists(s, prmtop, name):
"""Check if the named prmtop block exists, but it's not fatal if it doesn't."""
if name not in s.blocks:
print "WARNING: %s is missing the %s block. This may cause an error when you\n" \
"run the simulation. A LEaP with a hacked setBox command can generate it." \
% (prmtop, name)
def main():
print >>sys.stderr, "AMBER softcore TI setup utility\n"
# Parse command line options
if len(sys.argv) == 3:
print >>sys.stderr, "Dumping a LEaP-friendly PDB to stdout."
A = AmberSystem(sys.argv[1], sys.argv[2])
A.save_pdb()
sys.exit()
if len(sys.argv) == 4:
print >>sys.stderr, "Dumping a LEaP-friendly PDB to stdout. Atoms specified by " \
"'%s' have beta and\noccupancy values of 1.00," \
" and all others have beta and occupancy\nvalues of 0.00." % sys.argv[3]
A = AmberSystem(sys.argv[1], sys.argv[2])
atom_list = ambmask_to_atom_list(sys.argv[1], sys.argv[2], sys.argv[3])
A.save_pdb(atom_list)
sys.exit()
elif len(sys.argv) == 5:
(me, prmtop_A, rst_A, prmtop_B, rst_B) = sys.argv
else:
display_usage()
sys.exit()
print >>sys.stderr, "Loading %s and %s..." % (prmtop_A, rst_A)
A = AmberSystem(prmtop_A, rst_A)
print >>sys.stderr, "Loading %s and %s..." % (prmtop_B, rst_B)
B = AmberSystem(prmtop_B, rst_B)
print >>sys.stderr, "Finding softcore regions..."
# Guess the softcore regions
# sclist_A is atoms not in B; if the softcore regions are really big
# then the structures are probably messed up
atoms_A = make_atom_table(A)
atoms_B = make_atom_table(B)
sclist_A = [atoms_A[key] for key in atoms_A if key not in atoms_B]
if len(sclist_A) > 200: sclist_too_big_error(sclist_A, prmtop_A)
sclist_B = [atoms_B[key] for key in atoms_B if key not in atoms_A]
if len(sclist_B) > 200: sclist_too_big_error(sclist_B, prmtop_B)
not_sclist_A = [atoms_A[key] for key in atoms_A if key in atoms_B]
not_sclist_B = [atoms_B[key] for key in atoms_B if key in atoms_A]
# Create scmasks that we will report to the user
scmask_A = A.make_ambmask(sclist_A)
scmask_B = B.make_ambmask(sclist_B)
print >>sys.stderr, \
"""
%s has %d atoms in %d residues: %d softcore atoms, %d other atoms.
%s has %d atoms in %d residues: %d softcore atoms, %d other atoms.""" \
% (prmtop_A, A.num_atoms(), A.num_residues(), \
len(sclist_A), len(not_sclist_A), \
prmtop_B, B.num_atoms(), B.num_residues(), \
len(sclist_B), len(not_sclist_B))
assert len(not_sclist_A) == len(not_sclist_B), \
"Non-softcore regions have different lengths - this is a bug"
# Copy the periodic box
if 'BOX_DIMENSIONS' in A.blocks:
B.box = A.box # So the box will be in the rst too
B.new_block('BOX_DIMENSIONS', A.format_strings['BOX_DIMENSIONS'])
B.blocks['BOX_DIMENSIONS'] = A.blocks['BOX_DIMENSIONS']
B.blocks['POINTERS'][AmberSystem.IFBOX] \
= A.blocks['POINTERS'][AmberSystem.IFBOX]
else:
print >>sys.stderr, "No box information was found in %s." % prmtop_A
# These blocks are important to have...sander seems to want them
check_block_exists(A, prmtop_A, 'ATOMS_PER_MOLECULE')
check_block_exists(B, prmtop_B, 'ATOMS_PER_MOLECULE')
check_block_exists(A, prmtop_A, 'SOLVENT_POINTERS')
check_block_exists(B, prmtop_B, 'SOLVENT_POINTERS')
# Come up with sane-looking output filenames
(prmtop_base_A, prmtop_ext_A) = os.path.splitext(prmtop_A)
(rst_base_A, rst_ext_A) = os.path.splitext(rst_A)
(prmtop_base_B, prmtop_ext_B) = os.path.splitext(prmtop_B)
(rst_base_B, rst_ext_B) = os.path.splitext(rst_B)
prmtop_out_B = "%s.SC%s" % (prmtop_base_B, prmtop_ext_B)
rst_out_B = "%s.SC%s" % (rst_base_B, rst_ext_B)
pdb_out_A = "%s.SC.pdb" % prmtop_base_A
pdb_out_B = "%s.SC.pdb" % prmtop_base_B
# Save the prmtop and rst files
print >>sys.stderr, "\nGenerating %s and %s..." % (prmtop_out_B, rst_out_B)
B.save_prmtop(prmtop_out_B)
B.save_rst(rst_out_B)
# Save PDBs with softcore regions "highlighted"
print >>sys.stderr, "Generating %s and %s..." % (pdb_out_A, pdb_out_B)
A.save_pdb(sclist_A, pdb_out_A)
B.save_pdb(sclist_B, pdb_out_B)
print """
Suggested sander options:
First stage - Charge removal for %s:
icfe=1, ifsc=0,
crgmask='%s',
""" % (prmtop_A, scmask_A)
print """ Second stage - Alchemy step for %s:
icfe=1, ifsc=1,
crgmask='%s',
scmask='%s',
""" % (prmtop_A, scmask_A, scmask_A)
print """ Second stage - Alchemy step for %s:
icfe=1, ifsc=1,
crgmask='%s',
scmask='%s',
""" % (prmtop_out_B, scmask_B, scmask_B)
print """ Third stage - Charge restoration for %s:
icfe=1, ifsc=0,
crgmask='%s',
IMPORTANT:
Please double-check the generated files and parameters before using them.
You can visually verify the softcore regions by using your favorite PDB
viewer to view the generated PDB files and highlighting by temperature
factor or occupancy.
""" % (prmtop_out_B, scmask_B)
if __name__ == '__main__': main()