diff --git a/Data/Profunctor/Product.hs b/Data/Profunctor/Product.hs index 98c05cb0..61567fbe 100644 --- a/Data/Profunctor/Product.hs +++ b/Data/Profunctor/Product.hs @@ -1,43 +1,58 @@ -{-# LANGUAGE TemplateHaskell #-} +{-# OPTIONS_GHC -Wno-orphans #-} +{-# LANGUAGE TemplateHaskell #-} --- | If @p@ is an instance of 'ProductProfunctor' then @p a a'@ --- represents a sort of process for turning @a@s into @a'@s that can --- be "laid out side-by-side" with other values of @p@ to form "wider" --- processes. For example, if I have +-- | The classes in this module provide "profunctorial" analogues to +-- the operations from the 'Applicative' (@Apply@), +-- 'Data.Functor.Contravariant.Divisible.Divisible' (@Divise@) and +-- 'Data.Functor.Contravariant.Divisible.Decidable' (@Conclude@) type +-- classes: -- -- @ --- a :: p a a' -- a process for turning as into a's --- b :: p b b' -- a process for turning bs into b's --- c :: p c c' -- a process for turning cs into c's --- @ +-- (\<*\>) :: 'Applicative' f => f (a -> b) -> f a -> f b +-- ('****') :: 'SemiproductProfunctor' p => p x (a -> b) -> p x a -> p x b -- --- then I can combine them using 'p3' to get +-- 'Control.Applicative.liftA2' :: 'Applicative' f => (a -> b -> c) -> f a -> f b -> f c +-- 'liftP2' :: 'SemiproductProfunctor' p => (a -> b -> c) -> p x a -> p x b -> p x c -- --- @ --- p3 a b c :: p (a, b, c) (a', b', c') --- -- a process for turning (a, b, c)s into (a', b', c')s +-- pure :: 'Applicative' f => a -> f a +-- 'pureP' :: 'SemiproductProfunctor' p => a -> p x a +-- +-- divide :: 'Data.Functor.Contravariant.Divisible.Divisible' f => (a -> (b, c)) -> f b -> f c -> f a -- From contravariant +-- divise :: Divise f => (a -> (b, c)) -> f b -> f c -> f a -- From semigroupoids +-- 'diviseP' :: ('Semigroup' x, 'SemiproductProfunctor' p) => (a -> (b, c)) -> p a x -> p b x -> p c x +-- +-- conquer :: 'Data.Functor.Contravariant.Divisible.Decidable' f => f a -- From contravariant +-- 'conquerP' :: ('Monoid' x, 'ProductProfunctor' p) => p a x +-- +-- choose :: 'Data.Functor.Contravariant.Divisible.Decidable' f => (a -> 'Either' b c) -> f b -> f c -> f a -- From contravariant +-- decide :: Decide f => (a -> 'Either' b c) -> f b -> f c -> f a -- From semigroupoids +-- 'decideP' :: 'SemisumProfunctor' p => (a -> 'Either' b c) -> p b x -> p c x -> p a x +-- +-- lose :: 'Data.Functor.Contravariant.Divisible.Decidable' f => (a -> 'Void') -> f a -- From contravariant +-- conclude :: Conclude f => (a -> 'Void') -> f a -- From semigroupoids +-- 'concludeP' :: 'SumProfunctor' p => (a -> 'Void') -> p a x -- @ -- --- You would typically compose 'ProductProfunctor's using --- 'Profunctors''s 'Profunctor.lmap' and 'Applicative''s 'pure', --- '<$>' / 'fmap' and '<*>'. - +-- The @(Semi){Sum,Product}Profunctor@ classes also provide more +-- primitive operations using @Either@ and @(,)@. These can be very +-- useful with the @@ +-- package, which can automatically convert data types that have a +-- 'Generic' instance into Eithers-of-Tuples. module Data.Profunctor.Product (module Data.Profunctor.Product.Class, module Data.Profunctor.Product.Newtype, module Data.Profunctor.Product) where import Prelude hiding (id) -import Data.Profunctor (Profunctor, dimap, lmap, WrappedArrow, Star(..), Costar) +import Data.Profunctor (Profunctor(..), WrappedArrow, Star(..), Costar, Forget(..)) import qualified Data.Profunctor as Profunctor import Data.Profunctor.Composition (Procompose(..)) -import Data.Functor.Contravariant (Contravariant, contramap) -import Data.Functor.Contravariant.Divisible (Divisible(..), Decidable, chosen) +import Data.Functor.Contravariant.Divisible (Divisible(..), Decidable, chosen, lost) import Control.Category (id) -import Control.Arrow (Arrow, (***), (<<<), arr, (&&&), ArrowChoice, (+++)) -import Control.Applicative (Applicative, liftA2, pure, (<*>), Alternative, (<|>), (<$>)) +import Control.Arrow (Arrow(..), ArrowChoice(..)) +import Control.Applicative (Applicative(..), Alternative(..)) -import Data.Monoid (Monoid, mempty, (<>)) import Data.Tagged +import Data.Void (absurd) import Data.Bifunctor.Biff import Data.Bifunctor.Clown @@ -52,146 +67,162 @@ import Data.Profunctor.Product.Flatten import Data.Profunctor.Product.Tuples import Data.Profunctor.Product.Tuples.TH (pTns, maxTupleSize, pNs) --- ProductProfunctor and ProductContravariant are potentially --- redundant type classes. It seems to me that these are equivalent --- to Profunctor with Applicative, and Contravariant with Monoid --- respectively: --- --- import Data.Profunctor --- import Control.Applicative hiding (empty) --- import Data.Functor.Contravariant --- import Data.Monoid --- --- empty :: (Applicative (p ())) => p () () --- empty = pure () --- --- (***!) :: (Applicative (p (a, a')), Profunctor p) => --- p a b -> p a' b' -> p (a, a') (b, b') --- p ***! p' = (,) <$> lmap fst p <*> lmap snd p' --- --- point :: Monoid (f ()) => f () --- point = mempty --- --- (***<) :: (Monoid (f (a, b)), Contravariant f) => --- f a -> f b -> f (a, b) --- p ***< p' = contramap fst p <> contramap snd p' --- --- --- The only thing that makes me think that they are not *completely* --- redundant is that (***!) and (***<) have to be defined --- polymorphically in the type arguments, whereas if we took the --- Profunctor+Applicative or Contravariant+Monoid approach we do not --- have a guarantee that these operations are polymorphic. --- --- Previously I wanted to replace ProductProfunctor and --- ProductContravariant entirely. This proved difficult as it is not --- possible to expand the class constraints to require Applicative and --- Monoid respectively. We can't enforce a constraint 'Applicative (p --- a)' where 'a' does not appear in the head. This seems closely --- related to the above issue of adhoc implementations. --- --- There is a potential method of working around this issue using the --- 'constraints' package: --- stackoverflow.com/questions/12718268/polymorphic-constraint/12718620 --- --- Still, at least we now have default implementations of the class --- methods, which makes things simpler. - --- | '***$' is the generalisation of @Applicative@'s @\<$\>@. +-- | '***$' is the generalisation of 'Functor''s @\<$\>@. -- -- '***$' = 'Profunctor.rmap', just like '<$>' = 'fmap'. -- -- (You probably won't need to use this. @\<$\>@ should be -- sufficient.) -(***$) :: ProductProfunctor p => (b -> c) -> p a b -> p a c +(***$) :: Profunctor p => (b -> c) -> p a b -> p a c (***$) = Profunctor.rmap -instance ProductProfunctor (->) where - purePP = pure +-- { Product + +instance SemiproductProfunctor (->) where (****) = (<*>) -instance Arrow arr => ProductProfunctor (WrappedArrow arr) where - empty = id +instance ProductProfunctor (->) where + pureP = pure + +instance Arrow arr => SemiproductProfunctor (WrappedArrow arr) where (***!) = (***) +instance Arrow arr => ProductProfunctor (WrappedArrow arr) where + unitP = arr id + +instance SemiproductProfunctor Tagged where + (****) = (<*>) + instance ProductProfunctor Tagged where - purePP = pure + pureP = pure + +-- Should this use Apply? +instance Applicative f => SemiproductProfunctor (Star f) where (****) = (<*>) instance Applicative f => ProductProfunctor (Star f) where - purePP = pure + pureP = pure + +instance Functor f => SemiproductProfunctor (Costar f) where (****) = (<*>) instance Functor f => ProductProfunctor (Costar f) where - purePP = pure - (****) = (<*>) + pureP = pure -instance (ProductProfunctor p, ProductProfunctor q) => ProductProfunctor (Procompose p q) where - purePP a = Procompose (purePP a) (purePP ()) +instance (SemiproductProfunctor p, SemiproductProfunctor q) => SemiproductProfunctor (Procompose p q) where Procompose pf qf **** Procompose pa qa = - Procompose (lmap fst pf **** lmap snd pa) ((,) ***$ qf **** qa) + Procompose (lmap fst pf **** lmap snd pa) (liftP2 (,) qf qa) + +instance (ProductProfunctor p, ProductProfunctor q) => ProductProfunctor (Procompose p q) where + pureP a = Procompose (pureP a) (pureP ()) + +instance (Functor f, Applicative g, SemiproductProfunctor p) => SemiproductProfunctor (Biff p f g) where + Biff abc **** Biff ab = Biff $ liftP2 (<*>) abc ab instance (Functor f, Applicative g, ProductProfunctor p) => ProductProfunctor (Biff p f g) where - purePP = Biff . purePP . pure - Biff abc **** Biff ab = Biff $ (<*>) ***$ abc **** ab + pureP = Biff . pureP . pure -instance Applicative f => ProductProfunctor (Joker f) where - purePP = Joker . pure +-- Should this use Apply? +instance Applicative f => SemiproductProfunctor (Joker f) where Joker bc **** Joker b = Joker $ bc <*> b -instance Divisible f => ProductProfunctor (Clown f) where - purePP _ = Clown conquer +instance Applicative f => ProductProfunctor (Joker f) where + pureP = Joker . pure + +-- Should this use Devise? +instance Divisible f => SemiproductProfunctor (Clown f) where Clown l **** Clown r = Clown $ divide (\a -> (a, a)) l r -instance (ProductProfunctor p, ProductProfunctor q) => ProductProfunctor (Product p q) where - purePP a = Pair (purePP a) (purePP a) +instance Divisible f => ProductProfunctor (Clown f) where + pureP _ = Clown conquer + +instance (SemiproductProfunctor p, SemiproductProfunctor q) => SemiproductProfunctor (Product p q) where Pair l1 l2 **** Pair r1 r2 = Pair (l1 **** r1) (l2 **** r2) -instance (Applicative f, ProductProfunctor p) => ProductProfunctor (Tannen f p) where - purePP = Tannen . pure . purePP +instance (ProductProfunctor p, ProductProfunctor q) => ProductProfunctor (Product p q) where + pureP a = Pair (pureP a) (pureP a) + +-- Should this use Apply? +instance (Applicative f, SemiproductProfunctor p) => SemiproductProfunctor (Tannen f p) where Tannen f **** Tannen a = Tannen $ liftA2 (****) f a +instance (Applicative f, ProductProfunctor p) => ProductProfunctor (Tannen f p) where + pureP = Tannen . pure . pureP + +-- } + -- { Sum -instance SumProfunctor (->) where +instance SemisumProfunctor (->) where f +++! g = either (Left . f) (Right . g) -instance ArrowChoice arr => SumProfunctor (WrappedArrow arr) where +instance SumProfunctor (->) where + voidP = id + +instance ArrowChoice arr => SemisumProfunctor (WrappedArrow arr) where (+++!) = (+++) -instance Applicative f => SumProfunctor (Star f) where +instance ArrowChoice arr => SumProfunctor (WrappedArrow arr) where + voidP = arr id + +instance SemisumProfunctor (Forget r) where + Forget f +++! Forget g = Forget $ either f g + +instance SumProfunctor (Forget r) where + voidP = Forget absurd + +instance Functor f => SemisumProfunctor (Star f) where Star f +++! Star g = Star $ either (fmap Left . f) (fmap Right . g) -instance (SumProfunctor p, SumProfunctor q) => SumProfunctor (Procompose p q) where +instance Applicative f => SumProfunctor (Star f) where + voidP = Star pure + +instance (SemisumProfunctor p, SemisumProfunctor q) => SemisumProfunctor (Procompose p q) where Procompose pa qa +++! Procompose pb qb = Procompose (pa +++! pb) (qa +++! qb) -instance Alternative f => SumProfunctor (Joker f) where +instance (SumProfunctor p, SumProfunctor q) => SumProfunctor (Procompose p q) where + voidP = Procompose voidP voidP + +-- Should this use Alt? +instance Alternative f => SemisumProfunctor (Joker f) where Joker f +++! Joker g = Joker $ Left <$> f <|> Right <$> g -instance Decidable f => SumProfunctor (Clown f) where +instance Alternative f => SumProfunctor (Joker f) where + voidP = Joker $ absurd <$> empty + +-- Should this use Decide? +instance Decidable f => SemisumProfunctor (Clown f) where Clown f +++! Clown g = Clown $ chosen f g -instance (SumProfunctor p, SumProfunctor q) => SumProfunctor (Product p q) where +-- Should this use Conclude? +instance Decidable f => SumProfunctor (Clown f) where + voidP = Clown lost + +instance (SemisumProfunctor p, SemisumProfunctor q) => SemisumProfunctor (Product p q) where Pair l1 l2 +++! Pair r1 r2 = Pair (l1 +++! r1) (l2 +++! r2) -instance (Applicative f, SumProfunctor p) => SumProfunctor (Tannen f p) where +instance (SumProfunctor p, SumProfunctor q) => SumProfunctor (Product p q) where + voidP = Pair voidP voidP + +-- Should this use Apply? +instance (Applicative f, SemisumProfunctor p) => SemisumProfunctor (Tannen f p) where Tannen l +++! Tannen r = Tannen $ liftA2 (+++!) l r +instance (Applicative f, SumProfunctor p) => SumProfunctor (Tannen f p) where + voidP = Tannen $ pure voidP + -- | A generalisation of @map :: (a -> b) -> [a] -> [b]@. It is also, -- in spirit, a generalisation of @traverse :: (a -> f b) -> [a] -> f -- [b]@, but the types need to be shuffled around a bit to make that -- work. list :: (ProductProfunctor p, SumProfunctor p) => p a b -> p [a] [b] -list p = Profunctor.dimap fromList toList (empty +++! (p ***! list p)) +list p = Profunctor.dimap fromList toList (unitP +++! (p ***! list p)) where toList :: Either () (a, [a]) -> [a] toList = either (const []) (uncurry (:)) fromList :: [a] -> Either () (a, [a]) fromList [] = Left () fromList (a:as) = Right (a, as) --- SumContravariant would be 'Data.Functor.Contravariant.Decidable' --- (without the requirement to also be Divisible). - -- } pTns [0..maxTupleSize] diff --git a/Data/Profunctor/Product/Class.hs b/Data/Profunctor/Product/Class.hs index 1e4f4645..8e980ad3 100644 --- a/Data/Profunctor/Product/Class.hs +++ b/Data/Profunctor/Product/Class.hs @@ -1,100 +1,217 @@ module Data.Profunctor.Product.Class where -import Data.Profunctor (Profunctor) -import qualified Data.Profunctor as Profunctor +import Data.Profunctor (Profunctor(..)) +import Data.Void (Void, absurd) ---- vv These are redundant imports but they're needeed for Haddock ---- links. AIUI Haddock can't link to something you haven't imported. +-- | A 'SemiproductProfunctor' is a profunctor whose input and output +-- values can be combined with @(,)@. ('***!') makes this most +-- obvious, though ('****') and 'liftP2' are equivalent in power. -- --- https://github.com/haskell/haddock/issues/796 -import qualified Control.Applicative -import qualified Data.Profunctor +-- A value of type @p a x@ with an @instance 'SemiproductProfunctor' p@ +-- often represents some sort of process for turning @a@s into @x@s +-- that can be "laid out side-by-side" with other similar values of +-- @p@ to form "wider" processes. For example, if I have three such +-- encoders: +-- +-- @ +-- p :: p a x -- a process for turning as into xs +-- q :: p b y -- a process for turning bs into ys +-- r :: p c z -- a process for turning cs into zs +-- @ +-- +-- I can then combine them using 'p3' to get: +-- +-- @ +-- -- a process for turning (a, b, c)s into (x, y, z)s +-- p3 p q r :: p (a, b, c) (x, y, z) +-- @ +-- +-- You would typically compose 'ProductProfunctor's using +-- 'Profunctor'\'s 'lmap', '<$>' \/ 'fmap', and @Apply@ \/ +-- 'Applicative'\'s 'pure' and @\<.\>@ \/ @('<*>')@. +-- +-- You can often write these instances mechancially: +-- +-- @ +-- instance SemiproductProfunctor P where +-- (****) = (\<.\>) -- If you have `instance Apply (P a)` +-- (****) = ('<*>') -- If you have `instance 'Applicative' (P a)` +-- @ +-- +-- Laws: +-- +-- * @('***!')@ is associative up to tuple rearrangement. +-- +-- * If @p@ is also a 'SemisumProfunctor', @('***!')@ should +-- distribute over @('+++!')@ up to tuple/@Either@ rearrangement. +class Profunctor p => SemiproductProfunctor p where + (***!) :: p a c -> p b d -> p (a, b) (c, d) + p ***! q = liftP2 (,) (lmap fst p) (lmap snd q) + + -- | Analogue to @('<*>')@. + (****) :: p x (a -> b) -> p x a -> p x b + p **** q = dimap (\x -> (x, x)) (uncurry ($)) $ p ***! q + + -- | Analogue to 'liftA2'. + liftP2 :: (a -> b -> c) -> p x a -> p x b -> p x c + liftP2 f p q = rmap f p **** q + + -- | Analogue to @divise@ (from "semigroupoids") or + -- 'Data.Functor.Contravariant.Divisible.decide' (from + -- "contravariant"). The 'Semigroup' constraint is necessary to + -- combine the "output" values. + -- + -- Why didn't we need a constraint when writing the analogues to + -- 'Applicative' operations? In the absence of linear types, there + -- are only trivial comonoids; we can always produce a function to + -- "duplicate" the input. + diviseP :: Semigroup x => (a -> (b,c)) -> p b x -> p c x -> p a x + diviseP f p q = dimap f (uncurry (<>)) $ p ***! q + {-# MINIMAL (***!) | (****) | liftP2 #-} --- | 'ProductProfunctor' is a generalization of --- 'Control.Applicative.Applicative'. --- It has the usual 'Control.Applicative.Applicative' "output" --- (covariant) parameter on the right. Additionally it has an "input" --- (contravariant) type parameter on the left. +-- | Analogue to @divised@ from "semigroupoids" or +-- 'Data.Functor.Contravariant.Divisible.divided' from +-- "contravariant". +divisedP :: + (SemiproductProfunctor p, Semigroup x) => p a x -> p b x -> p (a, b) x +divisedP = diviseP id + +-- | 'SemiproductProfunctor's with a unit. -- --- The methods for 'ProductProfunctor' correspond closely to those for --- 'Control.Applicative.Applicative' as laid out in the following --- table. --- The only difference between them is that the 'ProductProfunctor' --- has a contravariant type parameter on the left. We can use the --- contravariant to compose them in nice ways as described at --- "Data.Profunctor.Product". +-- If you have an 'Applicative' instance for @P a@, you can write this +-- instance mechanically: -- -- @ --- | Correspondence between Applicative and ProductProfunctor --- | --- | 'Control.Applicative.Applicative' f 'ProductProfunctor' p --- | --- | 'Control.Applicative.pure' 'purePP' --- | :: b -> f b :: b -> p a b --- | --- | ('Control.Applicative.<$>') ('Data.Profunctor.Product.***$') --- | :: (b -> b') :: (b -> b') --- | -> f b -> p a b --- | -> f b' -> p a b' --- | --- | ('Control.Applicative.<*>') ('****') --- | :: f (b -> b') :: p a (b -> b') --- | -> f b -> p a b --- | -> f b' -> p a b' +-- instance ProductProfunctor p where +-- pureP = pure -- @ -- --- It's easy to make instances of 'ProductProfunctor'. Just make --- instances +-- Law: @unitP@ is an identity for @('***!')@, up to tuple +-- rearrangement. +class SemiproductProfunctor p => ProductProfunctor p where + -- | Unit for @('***!')@. + unitP :: p () () + unitP = pureP () + + -- | Analogue to 'pure'. + pureP :: a -> p x a + pureP a = dimap (const ()) (const a) unitP + + -- | Analogue to 'Data.Functor.Contravariant.Divisible.conquer' + -- (from "contravariant"). The 'Monoid' constraint is necessary to + -- provide a "default" value to emit. + -- + -- Unit for 'diviseP'. + conquerP :: Monoid x => p a x + conquerP = pureP mempty + {-# MINIMAL unitP | pureP #-} + +-- | As redundant as 'Data.Functor.Contravariant.Divisible.conquered' +-- from "contravariant", but also provided for symmetry. +conqueredP :: (ProductProfunctor p, Monoid x) => p () x +conqueredP = conquerP + +-- | A 'SemisumProfunctor' is a profunctor whose input and output +-- values can be combined with 'Either'. -- +-- You can often write these instances mechanically: +-- +-- @ +-- instance SemisumProfunctor P where +-- decideP f p q = 'Data.Bifunctor.Flip.runFlip' $ decide f ('Data.Bifunctor.Flip.Flip' p) ('Data.Bifunctor.Flip.Flip' q) -- If you have `instance Decide (Flip P a)` +-- decideP f p q = 'Data.Bifunctor.Flip.runFlip' $ 'Data.Functor.Contravariant.Divisible.choose' f ('Data.Bifunctor.Flip.Flip' p) ('Data.Bifunctor.Flip.Flip' q) -- If you have `instance 'Data.Functor.Contravariant.Divisible.Decidable' (Flip P a)` -- @ --- instance 'Profunctor' MyProductProfunctor where --- ... -- --- instance 'Control.Applicative.Applicative' (MyProductProfunctor a) where --- ... +-- Laws: +-- +-- * @('+++!')@ is associative up to 'Either' rearrangement. +-- +-- * If @p@ is also a 'SemiproductProfunctor', @('***!')@ should +-- distribute over @('+++!')@ up to tuple/'Either' rearrangement. +-- +-- === Where is the 'Control.Applicative.Alternative' analogue? +-- +-- It is possible to write a version of @('Control.Applicative.<|>')@ +-- that uses 'Either's: +-- +-- @ +-- alt :: 'Control.Applicative.Alternative' f => f a -> f b -> f ('Either' a b) +-- alt f g = Left \<$\> f 'Control.Applicative.<|>' Right \<$\> g -- @ -- --- and then write +-- From this, you might expect 'SemisumProfunctor' to contain an +-- analogue to @('Control.Applicative.<|>')@ like this: -- -- @ --- instance 'ProductProfunctor' MyProductProfunctor where --- 'purePP' = 'Control.Applicative.pure' --- ('****') = ('Control.Applicative.<*>') +-- (\<|||!\>) :: 'SemisumProfunctor' p => p x a -> p x a -> p x a +-- p \<|||!\> q = dimap _____(either id id) $ p '+++!' q +-- ??? -- @ -class Profunctor p => ProductProfunctor p where - -- | 'purePP' is the generalisation of @Applicative@'s - -- 'Control.Applicative.pure'. - -- - -- (You probably won't need to use this except to define - -- 'ProductProfunctor' instances. In your own code @pure@ should be - -- sufficient.) - purePP :: b -> p a b - purePP b = Profunctor.dimap (const ()) (const b) empty - - -- | '****' is the generalisation of @Applicative@'s - -- 'Control.Applicative.<*>'. +-- +-- The type of that hole is @x -> 'Either' x x@, and we cannot choose +-- a sensible default. We also cannot introduce a typeclass like we +-- did with 'diviseP', as this would require us to create a strange +-- comonoid class with 'Either' as the bifunctor: +-- +-- @ +-- -- Yuck: +-- class ComonoidE w where +-- comappendE :: w -> Either w w +-- comemptyE :: w -> 'Void' +-- @ +-- +-- There are no @ComonoidE@ instances because we can never define a +-- @comemptyE@: 'Void' is uninhabited. Even if we restrict ourselves +-- to a @Cosemigroup@ class, it seems unlikely that it will have any +-- useful instances, so we do not bother defining an +-- 'Control.Applicative.Alternative'-style interface from a +-- 'SemisumProfunctor'. +class Profunctor p => SemisumProfunctor p where + (+++!) :: p a c -> p b d -> p (Either a b) (Either c d) + (+++!) p q = decideP id (rmap Left p) (rmap Right q) + + -- | Analogue to @decide@ (from "semigroupoids") or + -- 'Data.Functor.Contravariant.Divisible.choose' (from + -- "contravariant"). + decideP :: (a -> Either b c) -> p b x -> p c x -> p a x + decideP f p q = dimap f (either id id) $ p +++! q + {-# MINIMAL (+++!) | decideP #-} + +-- | Analogue to @decided@ (from "semigroupoids") or +-- 'Data.Functor.Contravariant.Divisible.chosen' (from +-- "contravariant"). +decidedP :: SemisumProfunctor p => p b x -> p c x -> p (Either b c) x +decidedP = decideP id + +-- | 'SemisumProfunctor's with a unit. +-- +-- You can often write these instances mechanically: +-- +-- @ +-- instance SumProfunctor p where +-- concludeP f = 'Data.Bifunctor.Flip.runFlip' $ conclude f -- If you have `instance Conclude ('Data.Bifunctor.Flip.Flip' P a)` +-- concludeP f = 'Data.Bifunctor.Flip.runFlip' $ 'Data.Functor.Contravariant.Divisible.lose' f -- If you have `instance 'Data.Functor.Contravariant.Divisible.Decidable' ('Data.Bifunctor.Flip.Flip' P a)` +-- @ +-- +-- Law: @voidP@ is an identity for @('+++!')@, up to @Either@ +-- rearrangement. +class SemisumProfunctor p => SumProfunctor p where + -- | Unit for @('+++!')@. + voidP :: p Void Void + voidP = concludeP id + + -- | Analogue to @conclude@ (from "semigroupoids") or + -- 'Data.Functor.Contravariant.Divisible.lose' (from + -- "contravariant"). -- - -- (You probably won't need to use this except to define - -- 'ProductProfunctor' instances. In your own code @\<*\>@ should - -- be sufficient.) - (****) :: p a (b -> c) -> p a b -> p a c - (****) f x = Profunctor.dimap dup (uncurry ($)) (f ***! x) - where dup y = (y, y) - - -- | Use @pure ()@ instead. @empty@ may be deprecated in a future - -- version. - empty :: p () () - empty = purePP () - - -- | Use @\\f g -> (,) 'Control.Applicative.<$>' - -- 'Data.Profunctor.lmap' fst f 'Control.Applicative.<*>' - -- 'Data.Profunctor.lmap' snd g@ instead. - -- @(***!)@ may be deprecated in a future version. - (***!) :: p a b -> p a' b' -> p (a, a') (b, b') - f ***! g = (,) `Profunctor.rmap` Profunctor.lmap fst f - **** Profunctor.lmap snd g - -class Profunctor p => SumProfunctor p where - -- Morally we should have 'zero :: p Void Void' but I don't think - -- that would actually be useful - (+++!) :: p a b -> p a' b' -> p (Either a a') (Either b b') + -- Unit for 'decideP'. + concludeP :: (a -> Void) -> p a x + concludeP f = dimap f absurd voidP + {-# MINIMAL voidP | concludeP #-} + +-- | Analogue to @concluded@ (from "semigroupoids") or +-- 'Data.Functor.Contravariant.Divisible.lost'. Potentially more +-- meaningful than 'concludeP', as it shows that we definitely cannot +-- receive _anything_ on the input side. +concludedP :: SumProfunctor p => p Void x +concludedP = concludeP id diff --git a/Data/Profunctor/Product/Default.hs b/Data/Profunctor/Product/Default.hs index 571d537b..20f0ffaa 100644 --- a/Data/Profunctor/Product/Default.hs +++ b/Data/Profunctor/Product/Default.hs @@ -43,14 +43,12 @@ -- product type has a different composition function. module Data.Profunctor.Product.Default - ( module Data.Profunctor.Product.Default - , module Data.Profunctor.Product.Default.Class + ( module Data.Profunctor.Product.Default.Class ) where import Control.Applicative (Const (Const)) import Data.Functor.Identity (Identity (Identity)) import Data.Profunctor (Profunctor, dimap) --- TODO: vv this imports a lot of names. Should we list them all? import Data.Profunctor.Product import Data.Tagged (Tagged (Tagged)) diff --git a/Data/Profunctor/Product/Default/Class.hs b/Data/Profunctor/Product/Default/Class.hs index edd7bb28..7ede3478 100644 --- a/Data/Profunctor/Product/Default/Class.hs +++ b/Data/Profunctor/Product/Default/Class.hs @@ -76,7 +76,7 @@ class GDefault p f g where instance ProductProfunctor p => GDefault p U1 U1 where type GDefCnstr p U1 U1 = () - gdef1 = dimap (const ()) (const U1) empty + gdef1 = dimap (const ()) (const U1) unitP instance (Profunctor p, GDefault p f g) => GDefault p (M1 i c f) (M1 i c g) where type GDefCnstr p (M1 i c f) (M1 i c g) = GDefCnstr p f g diff --git a/Data/Profunctor/Product/Examples.hs b/Data/Profunctor/Product/Examples.hs index 3de2803a..590f0707 100644 --- a/Data/Profunctor/Product/Examples.hs +++ b/Data/Profunctor/Product/Examples.hs @@ -9,8 +9,7 @@ module Data.Profunctor.Product.Examples where import qualified Data.Profunctor as P import qualified Data.Profunctor.Product as PP import qualified Data.Profunctor.Product.Default as D -import Control.Applicative (Applicative, liftA2, pure, (<*>), - ZipList(ZipList), getZipList) +import Control.Applicative (liftA2, ZipList(..)) newtype Replicator r f a b = Replicator (r -> f b) deriving Functor @@ -48,10 +47,12 @@ instance Applicative f => Applicative (Replicator r f a) where instance Functor f => P.Profunctor (Replicator r f) where dimap _ h (Replicator f) = Replicator ((fmap . fmap) h f) -instance Applicative f=> PP.ProductProfunctor (Replicator r f) where - purePP = pure +instance Applicative f => PP.SemiproductProfunctor (Replicator r f) where (****) = (<*>) +instance Applicative f => PP.ProductProfunctor (Replicator r f) where + pureP = pure + -- In the real world this would be 'StateT [a] Maybe b' but I don't want to -- pick up the transformers dependency here newtype Take a z b = Take ([a] -> Maybe ([a], b)) @@ -93,10 +94,12 @@ instance Applicative (Take a z) where instance P.Profunctor (Take a) where dimap _ g (Take h) = Take ((fmap . fmap . fmap) g h) -instance PP.ProductProfunctor (Take a) where - purePP = pure +instance PP.SemiproductProfunctor (Take a) where (****) = (<*>) +instance PP.ProductProfunctor (Take a) where + pureP = pure + newtype Traverse f a b = Traverse { runTraverse :: a -> f b } deriving Functor -- | Use 'sequenceT' instead. It has a better name. @@ -132,10 +135,12 @@ instance Applicative f => Applicative (Traverse f a) where instance Functor f => P.Profunctor (Traverse f) where dimap g h (Traverse f) = Traverse (P.dimap g (fmap h) f) -instance Applicative f => PP.ProductProfunctor (Traverse f) where - purePP = pure +instance Applicative f => PP.SemiproductProfunctor (Traverse f) where (****) = (<*>) +instance Applicative f => PP.ProductProfunctor (Traverse f) where + pureP = pure + newtype Zipper a b = Zipper { unZipper :: Traverse ZipList a b } deriving Functor @@ -151,10 +156,12 @@ instance Applicative (Zipper a) where pure = Zipper . pure f <*> x = Zipper ((<*>) (unZipper f) (unZipper x)) -instance PP.ProductProfunctor Zipper where - purePP = pure +instance PP.SemiproductProfunctor Zipper where (****) = (<*>) +instance PP.ProductProfunctor Zipper where + pureP = pure + -- } -- | A challenge from a Clojurist on Hacker News diff --git a/Data/Profunctor/Product/Internal/TH.hs b/Data/Profunctor/Product/Internal/TH.hs index fac66997..981efdfa 100644 --- a/Data/Profunctor/Product/Internal/TH.hs +++ b/Data/Profunctor/Product/Internal/TH.hs @@ -21,7 +21,7 @@ import Language.Haskell.TH (Dec(DataD, SigD, FunD, InstanceD, NewtypeD), import Language.Haskell.TH.Datatype.TyVarBndr (TyVarBndr_, TyVarBndrSpec, plainTVSpecified, tvName) import Control.Monad ((<=<)) -import Control.Applicative (pure, liftA2, (<$>), (<*>)) +import Control.Applicative (liftA2) makeAdaptorAndInstanceI :: Bool -> Maybe String -> Name -> Q [Dec] makeAdaptorAndInstanceI inferrable adaptorNameM = diff --git a/Data/Profunctor/Product/Tuples/TH.hs b/Data/Profunctor/Product/Tuples/TH.hs index 8bb40433..45dbda45 100644 --- a/Data/Profunctor/Product/Tuples/TH.hs +++ b/Data/Profunctor/Product/Tuples/TH.hs @@ -13,9 +13,8 @@ import Language.Haskell.TH import Language.Haskell.TH.Datatype.TyVarBndr import Data.Profunctor (Profunctor (dimap)) -import Data.Profunctor.Product.Class (ProductProfunctor, (***!), empty) +import Data.Profunctor.Product.Class (ProductProfunctor, (***!), unitP) import Data.Profunctor.Product.Default.Class (Default (def)) -import Control.Applicative (pure) mkTs :: [Int] -> Q [Dec] mkTs = mapM mkT @@ -34,7 +33,7 @@ mkT n = tySynD (tyName n) tyVars tyDef chain :: ProductProfunctor p => (t -> p a2 b2) -> (p a1 b1, t) -> p (a1, a2) (b1, b2) -chain rest (a, as) = uncurry (***!) (a, rest as) +chain rest (a, as) = a ***! rest as pTns :: [Int] -> Q [Dec] pTns = fmap concat . mapM pTn @@ -59,10 +58,10 @@ pTn n = sequence [sig, fun] `appT` foldl appT (conT tN) (map varT . take n $ bs) fun = funD (pT n) [ clause [] (normalB bdy) [] ] bdy = case n of - 0 -> [| const empty |] + 0 -> [| const unitP |] 1 -> [| id |] 2 -> [| uncurry (***!) |] - _ -> varE 'chain `appE` varE (pT (n - 1)) + _ -> [| chain $(varE (pT (n - 1))) |] pT n' = mkName ("pT" ++ show n') tN = mkName ('T':show n) as = [ mkName $ 'a':show i | i <- [0::Int ..] ] @@ -134,7 +133,7 @@ pN n = sequence [sig, fun] mkTupT vs = foldl appT (tupleT n) (map varT vs) mkPT a b = varT p `appT` varT a `appT` varT b fun = funD nm [ clause [] (normalB bdy) [] ] - bdy = varE 'convert `appE` unflat `appE` unflat `appE` flat `appE` pT + bdy = [| convert $(unflat) $(unflat) $(flat) $(pT) |] unflat = varE $ mkName unflatNm flat = varE $ mkName flatNm pT = varE $ mkName pTNm @@ -168,12 +167,12 @@ mkDefaultN n = [mkFun] ] where - mkDefs = zipWith (\a b -> default_ p a b) as bs + mkDefs = zipWith (default_ p) as bs mkTupT = foldl appT (tupleT n) . map varT mkFun = funD 'def [clause [] bdy []] bdy = normalB $ case n of - 0 -> varE 'empty - _ -> varE (mkName $ 'p':show n) `appE` tupE (replicate n (varE 'def)) + 0 -> [| unitP |] + _ -> varE (mkName $ 'p':show n) `appE` tupE (replicate n [| def |]) p = mkName "p" x = varT (mkName "x") t1 ~~ t2 = [t| $t1 ~ $t2 |]