forked from andig/canprogs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKComm.cpp
executable file
·903 lines (804 loc) · 21.6 KB
/
KComm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
/*
*
* Copyright (C) 2014 Jürg Müller, CH-5524
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see http://www.gnu.org/licenses/ .
*/
#if defined(__PYTHON__)
#include <Python.h>
#endif
#if defined(__LINUX__)
#include <fcntl.h>
#include <unistd.h>
#include <termios.h>
#include <sys/ioctl.h>
#define COM_HANDLE_CLOSE -1
#endif
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/timeb.h>
#include "NTypes.h"
#include "NUtils.h"
#include "KComm.h"
#if defined(__WINDOWS__)
#define COM_HANDLE_CLOSE INVALID_HANDLE_VALUE
// VCL
static const int MonWm_NOTIFY = WM_APP + 100;
#endif
static const int RXQUEUE = 512;
static const int TXQUEUE = RXQUEUE;
static const int DefaultBaudRate = 4800;
#if !defined(VCL)
bool HideError = false;
#endif
KComm::KComm()
{
FBaudrate = DefaultBaudRate;
FByteSize = 8;
FStopBits = 0; // 1 Stop bit
FDTR = false;
FParity = 0;
FRTS = false;
ErrorOccured = false;
FComPortNr = 0;
FCOM_Handle = COM_HANDLE_CLOSE;
memset(FReadBuffer, 0, sizeof(FReadBuffer));
FReadBufferLen = 0;
FReadBufferPtr = 0;
dev[0] = 0;
#if defined(__WINDOWS__)
FEventMask = (TComEvent) 0;
FEvMask = 0;
// Die serielle Schnittstelle ist geöffnet, falls COM_Handle >= 0;
// Fehler, falls < 0
memset(&osWrite, 0, sizeof(osWrite));
memset(&osRead, 0, sizeof(osRead));
memset(&osPostEvent, 0, sizeof(osPostEvent));
// create I/O event used for overlapped reads / writes
osRead.hEvent =
CreateEvent(NULL, // no security
true, // explicit reset req
false, // initial event reset
NULL); // no name
osWrite.hEvent =
CreateEvent(NULL, // no security
true, // explicit reset req
false, // initial event reset
NULL); // no name
osPostEvent.hEvent =
CreateEvent(NULL, // no security
true, // explicit reset req
true, // initial event reset
NULL); // no name
#endif
}
KComm::~KComm()
{
ExitCOM();
}
bool KComm::COM_INITIALISIERT()
{
return FCOM_Handle != COM_HANDLE_CLOSE;
}
void ShowLastErr(unsigned err);
#if defined(__WINDOWS__)
void ShowLastErr(unsigned Err)
{
char MsgBuf[500];
if (FormatMessageA(
FORMAT_MESSAGE_FROM_SYSTEM,
NULL,
Err,
LANG_USER_DEFAULT,
MsgBuf,
High(MsgBuf),
NULL) != 0)
{
printf("%s\n", MsgBuf);
} else
printf("GetLastError: %d\n", Err);
}
#endif
void KComm::ExitCOM()
// Schliesst die serielle Schnittstelle. RTS und DTR werden auf -12V
// zurückgesetzt.
{
// FDCB.Flag : LongInt
// Bits: FBinary ist das LSB
// 0 DWORD fBinary: 1; // binary mode, no EOF check
// 1 DWORD fParity: 1; // enable parity checking
// 2 DWORD fOutxCtsFlow:1; // CTS output flow control
// 3 DWORD fOutxDsrFlow:1; // DSR output flow control
// 4 DWORD fDtrControl:2; // DTR flow control type
// 6 DWORD fDsrSensitivity:1; // DSR sensitivity
// 7 DWORD fTXContinueOnXoff:1; // XOFF continues Tx
// 8 DWORD fOutX: 1; // XON/XOFF out flow control
// 9 DWORD fInX: 1; // XON/XOFF in flow control
// 10 DWORD fErrorChar: 1; // enable error replacement
// 11 DWORD fNull: 1; // enable null stripping
// 12 DWORD fRtsControl:2; // RTS flow control
// 14 DWORD fAbortOnError:1; // abort reads/writes on error
// 31 DWORD fDummy2:17; // reserved
if (COM_INITIALISIERT())
{
#if defined(__WINDOWS__)
// RTS und DTR werden auf -12V zurückgestellt: Das bedeutet
// für das serielle Interface, dass die Schnittstelle inaktiv
// ist.
FDCB.fDtrControl = DTR_CONTROL_DISABLE;
FDCB.fRtsControl = RTS_CONTROL_DISABLE;
if (!SetCommState(FCOM_Handle, &FDCB))
ShowLastErr(GetLastError());
if (!CloseHandle(FCOM_Handle))
ShowLastErr(GetLastError());
#endif
#if defined(__LINUX__)
close(FCOM_Handle);
#endif
FCOM_Handle = COM_HANDLE_CLOSE;
PutMonitorBuffer(0xD0000000 | FBaudrate);
}
}
bool KComm::SetComParameters()
{
// Setzt die richtigen Parameter der seriellen Schnittstelle.
bool result = true;
if (COM_INITIALISIERT())
{
#if defined(__WINDOWS__)
// Id;
FDCB.BaudRate = FBaudrate;
FDCB.ByteSize = FByteSize;
FDCB.Parity = FParity;
FDCB.StopBits = FStopBits;
FDCB.fBinary = true;
FDCB.fParity = (FParity != NOPARITY);
FDCB.fOutxCtsFlow = 0;
FDCB.fOutxDsrFlow = 0;
FDCB.fDtrControl = FDTR;
if (FRtsFlowControl)
{
FDCB.fOutxCtsFlow = true;
FDCB.fRtsControl = RTS_CONTROL_HANDSHAKE;
} else
if (FRTS)
FDCB.fRtsControl = RTS_CONTROL_ENABLE;
else
FDCB.fRtsControl = RTS_CONTROL_DISABLE;
FDCB.XonChar = 0;
FDCB.XoffChar = 0;
FDCB.XonLim = RXQUEUE / 2;
FDCB.XoffLim = RXQUEUE / 2;
FDCB.EofChar = 0;
FDCB.EvtChar = 0;
// TxDelay;
// Parameter setzen
result = SetCommState(FCOM_Handle, &FDCB);
if (!result)
ShowLastErr(GetLastError());
#endif
#if defined(__LINUX__)
termios newtio;
int ErrorNr;
int Speed;
memset(&newtio, 0, sizeof(newtio));
if (tcgetattr(FCOM_Handle, &newtio) < 0)
result = false;
newtio.c_cflag = newtio.c_cflag &
~(CS5 | CS6 | CS7 | CS8 | PARODD | PARENB | INPCK |
HUPCL /*| CIBAUD */ | CRTSCTS | CSTOPB | CREAD | CLOCAL);
newtio.c_iflag = 0;
Speed = 0;
if (FBaudrate <= 300)
{
Speed = B300;
FBaudrate = 300;
} else
if (FBaudrate <= 600)
{
Speed = B600;
FBaudrate = 600;
} else
if (FBaudrate <= 1200)
{
Speed = B1200;
FBaudrate = 1200;
} else
if (FBaudrate <= 2400)
{
Speed = B2400;
FBaudrate = 2400;
} else
if (FBaudrate <= 4800)
{
Speed = B4800;
FBaudrate = 4800;
} else
if (FBaudrate <= 9600)
{
Speed = B9600;
FBaudrate = 9600;
} else
if (FBaudrate <= 19200)
{
Speed = B19200;
FBaudrate = 19200;
} else
if (FBaudrate <= 38400)
{
Speed = B38400;
FBaudrate = 38400;
} else
if (FBaudrate <= 57600)
{
Speed = B57600;
FBaudrate = 57600;
} else
if (FBaudrate <= 115200)
{
Speed = B115200;
FBaudrate = 115200;
} else
result = false;
if (result)
cfsetspeed(&newtio, Speed);
switch (FByteSize)
{
case 5:
newtio.c_cflag |= CS5; // 5 bits
break;
case 6:
newtio.c_cflag |= CS6; // 6 bits
break;
case 7:
newtio.c_cflag |= CS7; // 7 bits
break;
case 8:
newtio.c_cflag |= CS8; // 8 bits
break;
default:
result = false;
}
switch (FParity)
{
case 0:
break; // none
case 1:
newtio.c_cflag |= PARODD | PARENB; // odd
newtio.c_iflag |= INPCK; // input parity checking
break;
case 2:
newtio.c_cflag |= PARENB; // even
newtio.c_iflag |= INPCK;
break;
default:
result = false;
}
// Setting Raw Input and Defaults
//newtio.c_cflag := newtio.c_cflag or CSTOPB;
newtio.c_cflag |= CREAD | CLOCAL;
newtio.c_iflag |= BRKINT;
//newtio.c_lflag:= newtio.c_lflag and not (ICANON or ECHO or ISTRIP);
newtio.c_oflag = 0;
newtio.c_lflag = 0;
newtio.c_cc[VMIN] = 1;
newtio.c_cc[VTIME] = 0;
if (result)
{
ErrorNr = tcflush(FCOM_Handle, TCIOFLUSH); // Flush the serial port
result = ErrorNr == 0;
}
if (result)
{
ErrorNr = tcsetattr(FCOM_Handle, TCSANOW, &newtio); // Set the parameters
result = ErrorNr == 0;
}
#endif
}
return result;
}
void KComm::SetDTR(bool NewDTR)
{
FDTR = NewDTR;
SetComParameters();
if (COM_INITIALISIERT())
PutMonitorBuffer(0xA0000000 | int(FDTR) | 2);
}
void KComm::SetRTS(bool NewRTS)
{
FRTS = NewRTS;
SetComParameters();
if (COM_INITIALISIERT())
PutMonitorBuffer(0xA0000000 | int(FRTS));
}
void KComm::SetRtsFlowControl(bool NewRTS)
{
FRtsFlowControl = NewRTS;
SetComParameters();
}
void KComm::SetBits(int NewBits)
{
FByteSize = NewBits;
SetComParameters();
if (COM_INITIALISIERT())
PutMonitorBuffer(0xA0000000 | 0x30 | (FByteSize & 0xf));
}
void KComm::SetParity(int NewParity)
{
FParity = NewParity;
SetComParameters();
if (COM_INITIALISIERT())
PutMonitorBuffer(0xA0000000 | 0x20 | (FParity & 0xf));
}
void KComm::SetStopBits(int NewStopBits)
{
FStopBits = NewStopBits;
SetComParameters();
if (COM_INITIALISIERT())
PutMonitorBuffer(0xA0000000 | 0x10 | (FStopBits & 0xf));
}
int KComm::SendBreak(int Duration)
{
if (!COM_INITIALISIERT())
return 0;
#if defined(__WINDOWS__)
SetCommBreak(FCOM_Handle);
if (Duration > 0)
{
NUtils::SleepMs(Duration);
} else
Duration = 0;
ClearCommBreak(FCOM_Handle);
PutMonitorBuffer(0xA0000000 | EV_BREAK);
return Duration;
#else
return tcsendbreak(FCOM_Handle, Duration);
#endif
}
#if defined(__WINDOWS__)
bool KComm::InitCOM()
{
// Eröffnet die serielle Schnittstelle("FCOM_Handle" >= 0) und
// setzt die Parameter(Baudrate, RTS und DTR).
COMMTIMEOUTS CommTimeOuts;
char Nr[16];
bool result = true;
FReadBufferLen = 0;
FReadBufferPtr = 0;
if (COM_INITIALISIERT())
ExitCOM();
if (!COM_INITIALISIERT() && (FComPortNr != 0 || dev[0]))
{
if (dev[0] && strlen(dev) < 8)
strcpy(Nr, dev);
else
sprintf(Nr, "COM%d", FComPortNr);
FCOM_Handle =
CreateFileA(Nr, GENERIC_READ | GENERIC_WRITE,
0, // exclusive access
NULL, // no security attrs
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL |
FILE_FLAG_OVERLAPPED, // overlapped I/O
0);
if (COM_INITIALISIERT())
{
// get any early notifications
SetEventMask(FEventMask);
// setup device buffers
SetupComm(FCOM_Handle, 4096, 4096) ;
// set up for overlapped non-blocking I/O
CommTimeOuts.ReadIntervalTimeout = 0xFFFFFFFF ;
CommTimeOuts.ReadTotalTimeoutMultiplier = 0 ;
CommTimeOuts.ReadTotalTimeoutConstant = 0 ;
CommTimeOuts.WriteTotalTimeoutMultiplier = 0 ;
CommTimeOuts.WriteTotalTimeoutConstant = 5000 ;
SetCommTimeouts(FCOM_Handle, &CommTimeOuts);
} else {
ShowLastErr(GetLastError());
}
if (!COM_INITIALISIERT())
result = false;
}
if (COM_INITIALISIERT())
{
memset(&FDCB, 0, sizeof(FDCB));
FDCB.DCBlength = sizeof(FDCB);
if (!GetCommState(FCOM_Handle, &FDCB))
{
// war nicht erfolgreich: alles zur¸ck
ShowLastErr(GetLastError());
ExitCOM();
} else
if (!SetComParameters())
{
// war nicht erfolgreich: alles zur¸ck
ExitCOM();
} else {
PutMonitorBuffer(0xC0000000 | FBaudrate);
}
}
return result;
}
#endif
#if defined(__LINUX__)
bool KComm::InitCOM()
{
// Eröffnet die serielle Schnittstelle("FCOM_Handle" >= 0) und
// setzt die Parameter(Baudrate, RTS und DTR).
fd_set rfds;
timeval tv;
char Nr[128];
bool result = true;
FReadBufferLen = 0;
FReadBufferPtr = 0;
if (COM_INITIALISIERT())
ExitCOM();
if (!COM_INITIALISIERT() &&
(FComPortNr != 0 || strlen(dev) > 0))
{
if (strlen(dev))
{
Nr[0] = 0;
if (strncmp(dev, "/dev/", 5))
strcpy(Nr, "/dev/");
strcat(Nr, dev);
} else
sprintf(Nr, "/dev/ttyS%d", FComPortNr-1); // vor Version 2.2: /dev/cuaX
FCOM_Handle = open(Nr, O_RDWR | O_NOCTTY | O_NONBLOCK); // Try user input depending on port
if (FCOM_Handle <= 0)
FCOM_Handle = COM_HANDLE_CLOSE;
// printf("dev: %s opened: %d\n", Nr, (int)COM_INITIALISIERT());
if (COM_INITIALISIERT())
{
if (!SetComParameters())
// war nicht erfolgreich: alles zurück
ExitCOM();
else {
// WORKAROUND TO STRANGE READER BEHAVIOUR ON FIRST READING OPERATION
tv.tv_sec = 0;
tv.tv_usec = 20000;
FD_ZERO(&rfds);
FD_SET(FCOM_Handle, &rfds);
select(FCOM_Handle+1, &rfds, NULL, NULL, &tv);
tcflush(FCOM_Handle, TCIFLUSH);
PutMonitorBuffer(0xC0000000 | FBaudrate);
}
} else
result = false;
}
return result;
}
#endif
void KComm::SetComPortNr(int Nr)
{
ExitCOM();
if (Nr >= 0 && Nr <= 15)
FComPortNr = Nr;
}
void KComm::SetBaudrate(int Baud)
{
const bool NoClose = false;
if (NoClose && COM_INITIALISIERT())
{
FBaudrate = Baud;
PutMonitorBuffer(0xE0000000 | Baud);
SetComParameters();
} else {
ExitCOM();
FBaudrate = Baud;
}
}
void KComm::SetComDev(const char * tty_dev)
{
if (!this)
return;
if (!tty_dev)
dev[0] = 0;
else
if (strlen(tty_dev) < High(dev))
strcpy(dev, tty_dev);
}
#if defined(__WINDOWS__)
int KComm::ReadFromCOM()
{
// Ein Zeichen aus dem Puffer auslesen. Ist der Puffer leer, so wird
// NULL_CHAR (0x1000) zurückgegeben.
// Die von der Prozedur "ReadComm" gelesenen Zeichen werden im Puffer
// "ReadBuffer" zwischengespeichert. Das erlaubt es, dass ein
// einzelnes gelesenes Zeichen wieder in den Puffer zurückge-
// speichert werden kann.
bool fReadStat;
COMSTAT ComStat;
unsigned Err;
long unsigned dwErrorFlags;
long unsigned dwLength;
// Wenn der ReadBuffer leer ist: ReadBuffer wieder füllen.
if (COM_INITIALISIERT() && FReadBufferLen <= FReadBufferPtr)
{
// 17. 2. 98
dwLength = 0;
if (ClearCommError(FCOM_Handle, &dwErrorFlags, &ComStat))
{
if (dwErrorFlags != 0)
{
PutMonitorBuffer(dwErrorFlags | 0x80000000);
ErrorOccured = true;
return dwErrorFlags | NULL_CHAR;
}
dwLength = ComStat.cbInQue;
} else
ShowLastErr(GetLastError());
if (dwLength >= MaxReadBuffer)
dwLength = MaxReadBuffer - 1;
if (dwLength > 0)
{
fReadStat = ReadFile(FCOM_Handle, FReadBuffer, MaxReadBuffer,
&dwLength, &osRead);
if (!fReadStat)
{
Err = GetLastError();
if (Err == ERROR_IO_PENDING)
{
// wait for a second for this transmission to complete
if (WaitForSingleObject(osRead.hEvent, 1000) != 0)
{
ShowLastErr(GetLastError());
dwLength = 0;
} else {
GetOverlappedResult(FCOM_Handle, &osRead, &dwLength, false);
osRead.Offset += dwLength;
}
} else
// some other error occurred
ShowLastErr(Err);
dwLength = 0;
}
}
FReadBufferLen = dwLength;
FReadBufferPtr = 0;
for (int i = 0; i < FReadBufferLen; i++)
PutMonitorBuffer(FReadBuffer[i] | 0x20000000);
}
if (FReadBufferLen > FReadBufferPtr)
return FReadBuffer[FReadBufferPtr++];
return NULL_CHAR;
}
#endif
#if defined(__LINUX__)
int KComm::ReadFromCOM()
{
fd_set rfds;
fd_set efds;
timeval tv;
unsigned char c[4];
int result = NULL_CHAR;
if (COM_INITIALISIERT())
{
tv.tv_sec = 0; // sofort antworten
tv.tv_usec = 0;
// vgl. Kylix in Team Seite 488
FD_ZERO(&rfds); // Löscht das gesamte Set von Deskriptoren.
FD_SET(FCOM_Handle, &rfds); // Setzt "FCOM_Handle" in "rdfs" ein.
FD_ZERO(&efds); // Dasselbe für die Exceptions vorbereiten.
FD_SET(FCOM_Handle, &efds);
int rval = select(FCOM_Handle+1, &rfds, NULL, &efds, &tv);
// Error: rval = -1 und errno ist gesetzt.
if (rval < 0 || FD_ISSET(FCOM_Handle, &efds))
{
// if (rval < 0)
// !!!!! ShowLastErr(errno);
tcflush(FCOM_Handle, TCIFLUSH);
} else // 0 = time out
if (FD_ISSET(FCOM_Handle, &rfds))
{
c[0] = 0;
if (read(FCOM_Handle, c, 1) == 1)
{
PutMonitorBuffer(c[0] | 0x20000000);
result = c[0];
}
}
}
return result;
}
#endif
void KComm::ClearBuffer()
{
while (ReadFromCOM() != NULL_CHAR)
;
}
#if defined(__LINUX__)
bool KComm::WriteToCOM(char ch)
{
bool Ok = COM_INITIALISIERT();
if (Ok)
{
Ok = ::write(FCOM_Handle, &ch, 1) == 1;
PutMonitorBuffer((unsigned char)(ch) | 0x48000000);
}
return Ok;
}
#endif
bool KComm::WriteBufferToCOM(const char * str, int Len)
{
if (Len <= 0 || str == NULL)
return false;
#if defined(__WINDOWS__)
bool Ok = false;
if (COM_INITIALISIERT())
{
int Err;
bool fWriteStat;
unsigned long dwBytesWritten;
if (FRtsFlowControl)
{
int i = 0;
do
{
Ok = false;
PutMonitorBuffer(str[i] | 0x48000000);
fWriteStat = WriteFile(FCOM_Handle, str + i, 1, &dwBytesWritten, &osWrite);
if (!fWriteStat)
{
Err = GetLastError();
if (Err == ERROR_IO_PENDING)
{
// wait for a second for this transmission to complete
if (WaitForSingleObject(osWrite.hEvent, 1000) != 0)
{
ShowLastErr(GetLastError());
dwBytesWritten = 0;
} else {
GetOverlappedResult(FCOM_Handle, &osWrite, &dwBytesWritten, false);
osWrite.Offset += dwBytesWritten;
}
} else
ShowLastErr(Err);
Ok = dwBytesWritten == 1;
}
i++;
} while (i < Len && Ok);
} else {
for (int i = 0; i < Len; i++)
PutMonitorBuffer(str[i] | 0x48000000);
fWriteStat = WriteFile(FCOM_Handle, str, Len, &dwBytesWritten, &osWrite);
if (!fWriteStat)
{
Err = GetLastError();
if (Err == ERROR_IO_PENDING)
{
// wait for a second for this transmission to complete
if (WaitForSingleObject(osWrite.hEvent, 1000) != 0)
{
ShowLastErr(GetLastError());
dwBytesWritten = 0;
} else {
GetOverlappedResult(FCOM_Handle, &osWrite, &dwBytesWritten, false);
osWrite.Offset += dwBytesWritten;
}
} else
ShowLastErr(Err);
}
Ok = (int) dwBytesWritten == Len;
}
}
return Ok;
#endif
#if defined(__LINUX__)
bool Ok = true;
for (int i = 0; Ok && i < Len; i++)
Ok = WriteToCOM(str[i]);
return Ok;
#endif
}
#if defined(__WINDOWS__)
bool KComm::WriteToCOM(char ch)
{
return WriteBufferToCOM(&ch, 1);
}
unsigned long KComm::GetCommModemStatus()
{
unsigned long result = 0;
if (COM_INITIALISIERT())
{
unsigned long res;
if (!::GetCommModemStatus(FCOM_Handle, &res))
ShowLastErr(GetLastError());
else
result = res;
}
return result;
}
bool KComm::CTS() // (clear-to-send) signal is on
// Pin 5 (25) / 8 (9)
{
return GetCommModemStatus() & MS_CTS_ON;
}
bool KComm::DSR() // (data-set-ready) signal is on
// Pin 6
{
return GetCommModemStatus() & MS_DSR_ON;
}
bool KComm::RING() // ring indicator signal is on
// Pin 22 (25)
{
return GetCommModemStatus() & MS_RING_ON;
}
bool KComm::DCD() // receive-line-signal-detect
// Pin 8 (25) / 1 (9)
{
return GetCommModemStatus() & MS_RLSD_ON;
}
unsigned KComm::WaitCommEvent()
// Gibt das Ereignis seit der letzten Abfrage zur¸ck.
{
if (::WaitCommEvent(FCOM_Handle, &FEvMask, &osPostEvent))
return FEvMask;
unsigned Err = GetLastError();
if (Err != ERROR_IO_PENDING)
ShowLastErr(Err);
return 0;
}
void KComm::SetEventMask(TComEvent EventMask)
{
FEventMask = EventMask;
FEvMask = 0;
if (COM_INITIALISIERT())
{
// get any early notifications
unsigned Events = 0; //EV_RXCHAR;
if (T_EV_BREAK & FEventMask) Events |= EV_BREAK;
if (T_EV_CTS & FEventMask) Events |= EV_CTS;
if (T_EV_DSR & FEventMask) Events |= EV_DSR;
if (T_EV_ERR & FEventMask) Events |= EV_ERR;
if (T_EV_RING & FEventMask) Events |= EV_RING;
if (T_EV_RLSD & FEventMask) Events |= EV_RLSD;
if (!SetCommMask(FCOM_Handle, Events))
ShowLastErr(GetLastError());
else
if (FEventMask)
WaitCommEvent();
}
}
unsigned KComm::Event()
{
unsigned result = FEvMask;
if (result)
SetEventMask(FEventMask);
return result;
}
#else
bool KComm::CTS() // (clear-to-send) signal is on
// Pin 5 (25) / 8 (9)
{
int s;
ioctl(FCOM_Handle, TIOCMGET, &s);
return (s & TIOCM_CTS) != 0;
}
bool KComm::DSR() // (data-set-ready) signal is on
// Pin 6
{
int s;
ioctl(FCOM_Handle, TIOCMGET, &s);
return (s & TIOCM_DSR) != 0;
}
bool KComm::RING() // ring indicator signal is on
// Pin 22 (25)
{
int s;
ioctl(FCOM_Handle, TIOCMGET, &s);
return (s & TIOCM_RNG) != 0;
}
#endif