-
Notifications
You must be signed in to change notification settings - Fork 185
/
distributed_logistic_regression.py
executable file
·82 lines (60 loc) · 2.13 KB
/
distributed_logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#!/usr/bin/env python
import numpy as np
import redis
def sigmoid(x):
return 1.0 / (1 + np.exp(-x))
def test_sigmoid():
x = 0
print("Input x: {}, the sigmoid value is: {}".format(x, sigmoid(x)))
def main():
client = redis.StrictRedis(host='localhost', port=6379, db=0)
# Prepare dataset
train_features = np.array([[1, 0, 26], [0, 1, 25]], dtype=np.float)
train_labels = np.array([1, 0], dtype=np.int)
test_features = np.array([[1, 0, 26], [0, 1, 25]], dtype=np.float)
test_labels = np.array([1, 0], dtype=np.int)
feature_size = 3
batch_size = 2
# Define hyperparameters
epoch_number = 10
learning_rate = 0.01
# Start training
for epoch_index in range(epoch_number):
print("Start the epoch: {}".format(epoch_index))
# Train with single example
train_features = np.array([1, 0, 25], dtype=np.float)
train_labels = np.array([0], dtype=np.int)
if client.exists("weights0") and client.exists(
"weights1") and client.exists("weights2"):
weights0 = float(client.get("weights0"))
weights1 = float(client.get("weights1"))
weights2 = float(client.get("weights2"))
else:
weights0 = 1.0
weights1 = 1.0
weights2 = 1.0
weights = np.array([weights0, weights1, weights2])
# [3] = [3] * [3]
multiple_weights_result = train_features * weights
# [1] = [3]
predict = np.sum(multiple_weights_result)
# [1] = [1]
sigmoid_predict = sigmoid(predict)
# [1] = [1]
predict_difference = train_labels - sigmoid_predict
# [3] = [3] * [1]
grad = train_features * predict_difference
# [3] = [3]
weights += learning_rate * grad
print("Current weights is: {}".format(weights))
client.set("weights0", weights[0])
client.set("weights1", weights[1])
client.set("weights2", weights[2])
# TODO: Predict with validate dataset
predict_true_probability = sigmoid(np.sum(train_features * weights))
print("Current predict true probability is: {}".format(
predict_true_probability))
likehood = 1 - predict_true_probability
print("Current likehood is: {}\n".format(likehood))
if __name__ == "__main__":
main()