-
Notifications
You must be signed in to change notification settings - Fork 1
/
toy 2.nb
7453 lines (7089 loc) · 329 KB
/
toy 2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.4' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 328998, 7445]
NotebookOptionsPosition[ 327407, 7388]
NotebookOutlinePosition[ 327781, 7404]
CellTagsIndexPosition[ 327738, 7401]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"BesselK", "[",
RowBox[{"1", ",", "0.53"}], "]"}]], "Input",
CellChangeTimes->{{3.8437281616814737`*^9, 3.8437281917711935`*^9}, {
3.8437282310294685`*^9, 3.8437282380883217`*^9}}],
Cell[BoxData["1.5364456904232793`"], "Output",
CellChangeTimes->{3.843728164888628*^9, 3.8437281949340887`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"BesselK", "[",
RowBox[{"1", ",", "x"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0.5", ",", "3"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8437281706428533`*^9, 3.843728170644122*^9}, {
3.8437282261599035`*^9, 3.8437282403915296`*^9}}],
Cell[BoxData[
GraphicsBox[{{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVkXk41HkAh8f526eHSLERkjxapCc5IurzLRSjKCqVsknKlkjsLh2kLTUV
HQpZs6jfyJMchVwdwzhGriLNCpmJyJFcg5kc2/7xPu//77vsUJC7nyyDwfD4
wf9WNDu8hMEQYshunyn/vBQapQ3qTopC/H6AmRARIoWho43qTSUhopSbnHFE
ii175yvoaQoRkZK+t9NFiitRRUNYI0RqgUtn4s9SzGtSKo88LIT4wbm43lwJ
VEIK/Of4QrAORtx72D+FxQWKz2ZvibAnnul2MWwSxD9upD5RBN0ZI4uYgEn4
L9EzZaeIwGVqMVMOTqIoyoa2zRIhqK6u86PTJPa6BtwO44tw5yjuvNacRFLv
28DRWRE4kbSPy4sJ6GixV/Qc/4SqDE5szrwJ6Eea36t37MLq9ZhTfzGOf4aX
Li9t78aJgKopvYRRzO87bJF1vAf5oRVSe/4w/lhhERuk/QWCmnXlraZD2K7M
i92e2wcnj8G3rMAB6Nu0C2SODECiFZau0fwFvQPbMgoXfoVgZt00P64HOpsj
l16nh3CqVcz2KuyGYQg7KNFkGJ/XZMpn9H/CpEab/umJYWTscG3i/SbCptkK
Te8XI/BsgdpK9R+dfhq3ML47Cg1JNX/+jQ6wei48uOQ9hr7aToNErzZc6t1t
VWM9jqsXHvtcNmuF1ESgpKIiRpC95UsXBwF+cSi06n4vho2d3eXw1Ba4R7Zf
TMuZwLlUN1NzxjtYxvoYDoVP4knaVjVWchMWcU0G9XdN4dgTtniT7VucsLwv
3rtSgjT/4gyn742IjAhz1xNL4Gh8/iS3tR4x/XHNDQ1SODJP55YU1WKnsUqG
UtJ3GPkUPDzTVYO7WVbcrT7T2MnMvmJvw0eTx4PpUJsZGGsbawTEVIFfH3R9
pdws3v8r+dKwpBIlx6JIXccszLxWxJZm8GDoAuvA/DmUVurI8DzLf3zNLnPb
wCCFeVfK35mXwXLg1/D2RwyyObZ4T7oyF2mk7MNqVRkSH1pQ2aj9Eq8Lpw5E
h8gQ+29reR+cnyOY6z7m1ilDmra/2VcdXALx0/1rRPaypKNqdd5+QREmrVh/
9eTKknSf9pFs60K00H4ReRpyJFOrNvlVYwFOWiz+O+q0HHlceb/o2cV8sHZ9
reH1yJEtps7auy3zEHnw1P16F3ny6kyrplT1KcamNWNciuVJSrWAqdCXC4PS
hHuvDRTI2mcBmRr5OTDzrXRbwFIgIe68cYW2LDxPVl9cJ1Ygy892mMt+z4QB
V/2qq5cicbGIT3nk+QjOCoM6TS8VSdilHcuKWzIw2NbNqzGmiEnCyKj9toc4
nhyzkHWDItbOj7mqExzwZQy+MW9R5FqLONBhmAPDoyWvleIo4qC7oCS8nwOh
WW/UzXiKdHo0GvR95GB3NRlOYFNE13Z8Q1s1B2R0rC49kyKXFPK1lJI4WOS0
L7qimiKH6rt02eAgOGvYJ7qGIupjzDNy6zhoULu83qmWIn8W+fodt+CA1ZE3
XttAkRMhb4Qw4mD2lLJvcwtFcg5kHv2uxkEfm4tPXRRpcr7m+ryHxmY5zyX0
Z4rMfG11tRXRoP2/Tvj1UkRn+GJLaRsNb3Ot7L5+ihyVLA0te0PjHT9Ee2SE
It6Csr6PJTTMVs2bejpGkcDFTNVjBTRi41KbQ8UUWeV3u3gih4azd/3VqSmK
ZFck3F7EoZHO8z1SIqVIWnRQGSeFhryRdOPZaYpceGoXbJ1Ewyf2ps6GWYoE
zFxPq7tD4+WYoWRujiLcjUM7Dt2g8R9DEpWT
"]]}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.5, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0.5, 3}, {0., 1.6564409038144805`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8437281717489777`*^9, 3.843728240817066*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"m", "=", "125"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"g", "=", "100"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"T", "=",
RowBox[{"10", "^",
RowBox[{"-", "15"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"M", "=",
RowBox[{"2.44", " ",
RowBox[{"10", "^", "18"}]}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"p", "=", "3.14"}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"solution1", "=",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "x", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"45", "*", "M", "*", "T"}], ")"}], "/",
RowBox[{"(",
RowBox[{"1.66", "*", " ", "4", "*",
SuperscriptBox["p", "4"], "*",
SuperscriptBox["m", "2"], "*",
SuperscriptBox["g",
RowBox[{"3", "/", "2"}]]}], ")"}]}], ")"}], "*",
RowBox[{"BesselK", "[",
RowBox[{"1", ",", "x"}], "]"}], "*",
SuperscriptBox["x", "3"]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"y", "[",
SuperscriptBox["10",
RowBox[{"-", "10"}]], "]"}], "\[Equal]",
RowBox[{"10", "^",
RowBox[{"-", "20"}]}]}]}], "}"}], ",", "\[IndentingNewLine]", "y",
",",
RowBox[{"{",
RowBox[{"x", ",",
SuperscriptBox["10",
RowBox[{"-", "10"}]], ",", "10"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]"}], "\n",
RowBox[{
RowBox[{
RowBox[{"LogLogPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"y", "[", "x", "]"}], "/.", "solution1"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
SuperscriptBox["10",
RowBox[{"-", "10"}]], ",", "10"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "100"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"10", "^", "11"}]}], "}"}]}], "}"}]}]}], "]"}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{"Show", "[", "%", "]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.8437288937806973`*^9, 3.8437289146525927`*^9}, {
3.8437289660202045`*^9, 3.8437291061427035`*^9}, {3.8437291439029016`*^9,
3.84372920397837*^9}, {3.8437292343090115`*^9, 3.843729266868451*^9}, {
3.8437292980844316`*^9, 3.8437293507053003`*^9}, {3.8437294316471305`*^9,
3.8437294341746783`*^9}, {3.8437295046667604`*^9,
3.8437295192745543`*^9}, {3.843729557039506*^9, 3.843729563894294*^9}, {
3.843729595453952*^9, 3.8437296110534363`*^9}, {3.843729681679157*^9,
3.843729796152292*^9}, {3.8437298339832096`*^9, 3.8437298401725817`*^9}, {
3.8437299200482273`*^9, 3.843729968365181*^9}, 3.843738863791375*^9, {
3.843738895845851*^9, 3.843738919059626*^9}, {3.843738962432953*^9,
3.8437390081709647`*^9}, {3.8437390736731844`*^9, 3.8437391981480885`*^9}}],
Cell[BoxData[
GraphicsBox[{{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwd2Hc8VW8YAHB7puxNxjUK151knmtdlCgr+YlCKaGMEhFChEhJRolENFQq
GcljS0iRkRXJTsnK7HeOf/h8P+8573me533O+957ZV3PWB9nYmBguIv+wf4b
JC/JZrFpgh1P7u4sNlOQk3YUX2vQAF2be1tmeVzJ7xCjAd6uiVs+WTxT7mio
AeX2rltuKZNwO7JBBX5Fli1HttRPKA1QYcdy+S7M2kNnfP68pYIYh8OWb00Y
v+h+QgVXdvEt/54TW3h7hwoHyZ+VMVuszWrcT6BCcUzYlh+y1AXFhFBhdFl6
y/SGurj7AVRo9p9SwjwaU59Z6UUF3u/FW440b3jS404F9pTzW5bjbqycd6LC
LorGlqGlsW27HRU2hOYUMbskNg3t2k+FxpH8Ld/ha2Y8qkeF0DGmLWt3NPNf
pFLhz5kCBcy9KR/kU9WoUEQy3fIF+xbKCwUqvMAP4TALi7aatEhRAeE5u+Uf
F/a39YpRIbeBuuVXva3240JUuBO4Io/ZJrPNg2k7FW6cCt7yden2q3s2KXCX
dEwOM4fmfu/fKxS4SNmx5TCr5gMFixRobCuVxewTXici+pMCJcPMWx5LM1j7
OEEBj3+5MpiPvHg3GDNKgbdltC1bjJTmLfdRoNf+zE7MsT6Btzt6KSAoq7Xl
ulXq1WfdFHC+zrhlHYGXXh4dFNheliSNebfxU3J3MwU2QrKkMLPn51SXlFHA
7UK0BGZD0tGXN96g8e/X2/Kld9J5Pq8psNt3XhzzUldmrOILCqhs/rflUfZU
q9QCCrgqSYphlkmxNfDLp4BdW5MoZicZAbLlAwrICPtvuWPPdWG2bAp8+VUn
grnmVNzAudsUSF63Fca8uWj28eAtClyrXRDaWr/L7NVqN9H7L9/Y8ouMqAc/
EingO/teEHP2h0un7a5QoElATmArXjX/Fco5CpzuC9iB+dHI3ktUfwrYzm9u
x9x1W45Zw5cCWZvRW8Yzfd6m6U2BMfskHsyDXQQZreMUSDSN5cbMlcCRp+VG
gec+jFvWMPi2S/sYBZ5oXODCnPg4iaxzhAI//zlzYtYPn6Xr2VFArpmXHbMn
teGDng0FHHLOs2FOnbp7QP8gBXBnv7JinrXd74jsp0BSegYL5qxdT7wNTCjQ
cnyVcasen0+lmFApENxAWL+LrV+sgRidTIGc0VNrmO31xLLoRArsWrq3irno
YdNDUzUKvDJgXMHsHKJUYa6A9hvlziLmOOI/ZK88BfLjyhYwl4x11e2VRdcz
tGMe8/aDV9r2SVFgnrw+h/mdwo/h/UIU6NTYOYt56uvbE5YCFPj0RuonZuHr
KdOWfBQovSQ6g9ln1WjRiocCg18YpjBLf7zPYc1KgauFd35gDrtwVN1+kQwL
Wb/6MIdfLRlWmScDPTDm65YztqUwzpFhPFa0d8tvS/8+mSGDhZNS15YZ+GqY
R8nA+Wbh45b5PAJ6h8nw9bB925blKhWfDZFhnfqiZcvGp+Id+8iwXefA+y3H
Vtu++EwGwwBSzZbTRdhj2skQ6G0PW37kXebURoYPmX7vttwiJs3RTAbcWHI5
5ghev3HnajIUVR8vxnw5TS5423MyaPAbZW+58ILqyFMyaP/+eHfL5W2Dbx6T
YW3VOnPL/cFGbg/J8CpCIxVzpEzHtvIsMmTk+8VjjiLuqkq6Q4baZ/djt2wY
5ns8A63PQEP0lt1VunhTyVAyPxm25YLIex7XyCAXnei/5bLeg3rxZPg1YHd2
y83qLAJXyRBpud17yzN9J99FkSEYZ3NiywQKSSiEDL1kRQfM0aWjdTWeZDjx
49UezDUOMjfvnyRDelEcBfPm3/+OXT6B1jPSkoD5vFbHhoErGUTvZClhPlle
rVF9mAwdVYeEMD9w3GDJOYTGX3aTF/O31T0d4XZkmHSu4MZ8WOf5GdpB1H+b
GTHvfZtVUGWGrrfhyMwd1Fecvp6/RydDfqXPOOaadSGTMGM0v4jvw5h19K4N
69PQftGM7sKs+u6i+DtNNJ669HeYd4BDwltFMkzFFF7FbHE0xfEOjgxHT8dc
xhzL0K4cIof6E/0iZgYD03odaTJcFvXwwvynmrpZLkQGg02p/Zjxrr4tGQJk
yHVYMsbsyfQ0I5iPDA0yj3UxfzfEaWrzoPffK1DB3FnLf7aMhQynX39jx8zr
bqmfzkQGnsmEzUwsHpa4bUEMZMDL8y1irjdmLNyzToL3plnDmEvqfw2/mSeB
3vKrUszpjS02JSMkQJbVnDE3XJd9Xf6NBJKh7daY/xw+L1w1SALVDGPTrfln
dvY2fiXBEaMcdcybvP7OvZ9JEHlHcDMD20++NlYNtJMgOIM8h/lQrqTsSBsJ
lCV2jmJ+Tm34PtVMgoox+/eYXR3FTq3XkODbIikZc6K8TzNDNQm8FzMvY66Y
qVFhrSLBmmOzP2bBMK9ZngoSGGX42WFuzK3y3/mSBA9jeoQwq/48fskwlwQD
2RJx6agdSsqH6DkkeCTuGog5OmyHwb57JOjnPuKOeZCvjNk2kwRv5rz0MCdr
bLt6/CYJjAfbptOw/erf0alTySTwmUjrwjzV9HqfTxIJfs7yVGM2/s9le2A8
CV6HzqVgXgorvhkbSQK10LA9mOXM2RcTIkgQ2HRBBrMVv5N9chgJ/tPg48Bc
8IBVLOMiCSieEl23Uf/33iHrsT8JeHzdvTED/7+CNjcSnGF2jElFXa35WbPg
GAk+RIwfx1zjlNcQ4UICwttRI8y1+ftGKf+R4MBF6c1b2Hpqp+3MtCZBnJLl
6S27nC4KOEACbWN2E8yNUfp6lpYkiBYVk8bc1DbqyLgX7Yf3+m0pqD+4ElM9
DEjQmrFHEXNLDIuCAUKCx1mnVm9iftL9UlyPBGEM/a2Y25ZCP7XuIYEZ0wU/
zO1xzdsoBBIw/1AtvoGdl8VukQw7SZD84BRHMurubg3+r5IkuPyH6+N11D3r
nDkvxUnwkr84BXMv/fm7E8IkkEOYpTD3f11faeEhQaoXUTYJ87+PsfncJPC7
FTeUiHoAlysSzkmCC3yNdzAP+phTyawkOGv3WQDzMFPq2fR1ImgFP55PQD2i
dOqf3yoR7GUTCrZsoZto8ZcI410KTphHU0ce/5snwqO2M1XxqMd2q48fnyZC
4P6yc3GoZ6ybjpC+EuHPTENmDPb87FdhhB4iOP/HTMPcNpudg+8iQtzdDyNX
sP6PC/qx+zMRZLPH5TEH1Oz2lm8mQg9v/s0o1Md5RZJkm9B4KGkqmO2dmV/s
bCACuet7dSTqPat9CxI1RFif9Zm8jHqdeC1EsJwI2vduyEeg/hkWlMVfisb3
4NbTcCz/1uPAW0IEg7oyKmY4pc/CU0yEnBUzWhi2X+f8imd9RAS2gUK9UNTc
fNaZS+lE8H6j+vkCNr+zfuXCbSIkaF7UxjzzZPfQn1tEOIl3yw7E8jNjlv+V
TIRj8NX9POob4a8ejV8lQpQ0/aM/dh61Zbf8iCGCUKi5POYAyWuz36OJIL8j
JcAPy6/0OOlbBBHAoXO7L2rx38LlPUFEeLC9WsYHi0efub8rkAidDHVHvLF4
4n9tdJ4jwofPz297YfkpNRl88iWCOV2U6TTq+y5B79+fIoJeVOkzD2w/+tjX
U36YCHeKdVyPYvvRk6fCtYeIcH0h1csFy/9qmO0HO3R923H+zqiHjOTb+w4S
IUUuI8AJdUqpZ+O6ORHGxjVMHbD375YuK6sZEaytzxIPoZ71227EQyfCrhUn
EXvUZmrF76QMiZAWwNVlg3ojZ+W1vja6HiYfJK2weMI+zNP3EEG44MXIfmx/
crpLtNIgwuP0ilwL1MXCBk9dSGj9bGeE96I+ER/7IHw3EW5E3K4yxt6nAJGb
NeJE0OjMZ9fC5j842d4sij5vRuS8Jja/esX2DmEiXJSzHqRi+92kc9x3fiK8
za7PJKHWds6PYOEmQnxHd6MKag+dC1XbOIkw+ryHcTeWr+jeDUF2Iqy+66Qo
Y/l9/nlBgRnNV+tANA51rin1LH2NABGXNVolsXhw7EWWKwR4um3xgzh2HjD2
TtsvE6AkuqFGFMvvbYiHxzwBKONyaYKotxHrnGOnCeAXrjXIjZ334jb7m/sI
EKsyX/aX1RQCbXJLH/YSIJR5fG4R9YWEefnobgK4X/opNY/64ubNVaSDANf2
nTj4E3X4SOfD180ECOIxlBlGHSGhIHCziQBZq9zzA6gv2567dLaBAHmsWqVf
UUc3CNmp1BBgSvuLaCfquEf2TDllBMi8EaXagDr+e773pTcESHs5GF+DOkFy
uee/1wTQevqi7x3qpMTbz4RfECCx/M2+N6hT/HqcEgoIYP6x5fhD1Pe0Hd8E
3ibAG9HjhlGos/0fydndIoCP52BMGOr7T1avkW4SoNxIoSwY9QPpTPefiQQY
HK4dOIv6EVM/n9sVAnysSlZwQv1YRzWUFkWA34JtVfaonwSETEhdJsDXHiaj
g6ifjUlW9YQSYI9VJxMd9avmI16W5wjQXsx9BI/6NXNRt4o/Aazui1GUUZfo
bhpy+hLgnM7Ub1nUZUVZYnVeBEjKFRMXQv3uxlCDljsBbvvukl5lQc8Dx2Oy
CjYEeGlWevkd6vK3zTuVDqL19rvK8Qb1Y2mK9C4rAmyTrD37DHXiCJuE2j4C
7L14Z+wealvPJ4JUI7Q/dnx3DENNbxES0DRA803/M3YetSY+jE8LIYC4WNZB
H9Tifw5u19MhgM15ACfUw0HL7CZkAoj0Jy1rov7ch77FRLTeOeOn8Kjr9JpZ
zNUJwGmeVoJDXcB4l3G/CgF8PSr7eVH7XDVcs5VH+08rb984symspl2bdRcg
wDBC3ZWAemZ1aeYEHwGquuX/hqEecDo6fXIHAXgKzG77owYZ8oQXNwEiD9kb
OaK+UtAzHMBMAOtj43oKqC9wGX47z0iAkbcrQSKoP/fYV85tqkOvtnE4J+r0
o+slK0vqsJC8d2KGyRQUz5o+4hxXB7MKiR0vUHNSxB/yfFeHV9cXo3NQzyzP
5PINqYNUsQ0koy4Ou3FXrFsdlg13hPiiRpIGru9qVAfpuA+LaqgdivwDzR+q
w11EUTyDEf28uMvo4/J9dej8YfY4CrVPHr9SfpY6zA+9GfFBHX3nRRdTqjoc
K/isb4i6OO4X9W2UOrQsuUaOMqDfN9mqrnmGq8PMlePSLajfRyT+EA1RB5rY
d5uXqL9dULt1zl8dTjcyxoaj5vE4vYB3VQdhfY9xIdRpI9oWA0fUQVGKfdfq
PzrgnLkexB9Wh8u355YHUGvbFdpMHEDrE3ZX4wHqk0bjxTmIOiSdaGZRQV2z
081XUEod/jAP68hs0mF/Jul9jag6eJ0P8VvfoEOPMJOsryB6/fIZkR7Uv3hy
2lu51eGqy7vca6gl1wfVY1bxcPu9WOzcOh0eBhbFUJfw8EOlfr4JNWk+dOj7
HB6eO3+puIfafEoyiTaJh7smDw/tQ32+x3F2pRsPJ7wlgjPW6MBou5te0IGH
yGalaC/UCR9X7tp/xINixo8ePdS5DWn7XzbgQWef0IHBVTq0v+p64vUaD88s
mMjCqFWSrU8P3cADo/feYy5/6YBX+bmak4iHqPjmegXUpPqYOPc4PKQVhFtO
L6P1WXlbOBmBxqPIUe2P2uyY0sT8WTyY7PDrCVqiwwniujuHFR7k69hUHBbo
4PkhdaF5Lx5qa36d3oHa5zgx6hodD4NBotn183Q4l34il18fD8LC4l/wqKMY
Pw1LquFhuEtLaGGODvc/5TkTufFAZTH8S/9Fh/zTtNl5Njy8l0v/Oj1Lh0es
faElTHhI7XgSlIT6hRbvXZ1VNTDP6xz6/JMOkBPcZzKpBkfK58fNZ+gw6Gvl
4NioBlLTRyoXJ+gwwj01LlmrBicHz1VEoR7LiwoceqcGC212uvyof/aWpbqX
qEF9OLxRHqfDugHui0+eGtQEvsAb/aCDOP/KwchINUhSiJzZPUyHzY169qQw
NdgM1aov/IbOP3mjMuOiGogfl5ZRQv24WnVXsb8a7FhjOyg1RAdd36MMw25q
sP2jxIHlfjq4tDcW6RurwdTbJw4uPXQwfpvivpeGjp91Z6vvpoNywTFxe101
4L1WzLUL9e+wtWhvihoU8m9um/lCh8vq6kfu4NQgqjTg5ZEOOjxITOVeZVED
J3JQyM9WOsQGu1WzMqL3K5qf10TtdYIQyLehCvr7aPfDWuhA1W8eUV5UhQ62
/liuD3Ro+LlRduiHKvSIDThxNdFh0uL4ydf1qhC5mfPweTXaL9yU+rNXVOHE
wN1niS/pUF608UXxsiroHrS5EFNMB1PrxrH+UFVwrfdcDH1Bh6Ppjhzm51Rh
diCJ2/0ZHW4oReyTdVeFxGnGB4KP6bBk1Pbpk4EqJAXRn7Lfp0NlyMlB0oYK
aL05m62dSIe9MqRfE39VwDFvY3oqgQ5dtWv/shZUgHoxlzM9ng6zXEmy3DMq
cFV6tnY2lg4y6a/dv39Fx0/wnQuPRPvrNdP0zVIV2PjPnwG5QAeL2TvLC/4q
oDLcpaZ3lA5l39PwC2dU4N32ubJGZzoo9qYcnz+tAnP2hcUHjtCBoS6hY85N
BQKsCxePONLhVXrIs1kbFWi3qBI8YUsHKRMnjwmyCsS2DTqom6HxZEp0983v
Bruzf05V4OmQZJ5RUuO/G1orhbPc/prAQGI9Rcl5Fxz5D79w+IIJmPqV5qXv
V4YQ9h/zm/PG0NWK5NpZKUF2rcqI43ljOCOw6FKgowgnfzPEe/w0ArVP+oXG
2gpQWORMDvE2Ana1Az9m9XBwsKLS1fm3Icz4JX1TV5UHXtnvfIdOGcISwe1k
uaocFCLm2lEzBsDV6/6sT0QWbmwk2F7zMADtnfhJLg4ZmHRojnGZpAEl1bRF
kEUG7BZ7LG6N00CN59gzaQYZ6M/oif7wgwbIktK0+++d4C1Q7KA1QgOuonnm
V+07YbV7IU+8jwb3pOKp1sk74ZT37h2LLTRoXi9LS+TfCY4hes8FXtBApkLE
hV1IGq4T40JcL9LATdS478w2aTA/uFB9L4gG+efOHuphlgbG73oqg4E0UCW8
tyr8IwXqTbeCnQNosCcvmLavXQrarMlXvb1pcCBpQDYpXgoui7hnvnehQbhb
7qgwkxSYa5jw5ZjQoBY+Hg1bkQT/hgBBHmMasEmv94//loQouaC1YEMaJPTY
fikdkgQ1NfJtJ4QGafvZGhwrJeG7cx/DHi0aPNc89TDrgiT4tEUYOKjRYJhb
3VPxlwQ0HZe0uSlCg7FtQJIdl4BLlSw9J4RpMMVzcE1iSAJEfpb56gnR4M8O
/wS+jxIQZMajtMBPAybBN0XrRRIQCaNJV7ej8QiZBS7nS8Bbi5CiQB60nsK9
yJ8sCcj+ExV4ahsNBETX2scTJaB45aWLAxcNRMUS0keuSIByqMATO04aSIpL
uQ5ckoBCkW57cw4a4CSR+c8+EqDRIHhnkpUGylLtFa0nJED3ZfRGKgtaT+lj
UU3OEsAv092qxoyut0yk0DtLCeiJ+fJRjAGtr6zgYCldAgx6K/d9W0dAVy4v
/6U++vxfdDf3FQRMcI2ahXgJWDP9J/t3DoG9Cg4MDxQl4LpYxHWuWQQsFSeb
sqQloHYUv7gyiYC9Mrdjynb0er9Tt84NI3BC1SokbFYcQt2OdnF9RMBT7Ztx
8Jg4RIW/PqzejIAP3pfn3KA4/Cz+s6Fbj0Ag4WaWZ5s4zAzE5opVIBBL6Qa7
InGoD20cYMhHoFDXhVXVRxxChpmSngUhMGNxJrHnpxicl2240rMTgeG41Ia1
H2JQLkByDhdHoKupclN6UAy4y80cCEIIgPG2M8fbxKA/pvbyIy4EUnQLrf4U
icFjftuLAkv6oKf6nXfbWTEw/bEcuO2jPpA8uczVT4oBj/WhzePN+uj+TIyw
PioGS48vpbbW6wM/Lnwu7YAYuJeWGTe91YcxCanPCkQxWPyVkx3wWB8SuQ/d
RP6IQvWYWsdCvD5Eml/64DolCg+ux+YeitWHCzF5zFdGRCEzVE+9LUofvOtb
dAq/ikK46LMxhwh9cGVe8G/5LAoaB57q/w3Vh0MGEk9+NYtC45vu50+C9cEi
zHCUv1YUOjJY354P1AeDylOSGhWisOAbkXTXXx801q7bHn4pCrrFzyutvPVB
Ras0IeSxKGgux3fcctcHmcChunu5omBzpko9+7A+CL1m26jJFIUvZWlZjyz0
gWtejTp2E32evUXVsp4+/CPYeXMmiEI5h2xei5o+LPiE5KlGiULYDufd3pL6
MDjVLOQfIAotmZyfuZb1oEP5z/5UL1Fo8u/wO/ddD5pOiF0pcxcFRovTftEf
9aB4xGPpn60ocCvYeis81IMrX1m6E6iisLNl8pjIIT1Qb9ZPy18SgemXrLPn
anUhINDlivSsCNQ1ehcyvNCFclx4QOoPEeAoEXKdytIF47DqA1c6RWCWlWPl
80VdcKQYc54oFoGKl6wuJVq6kD3svjxQKAJrvaI+K7t04Udi9A+7HBF4euAZ
PlZcF85ONlSbXBcB/KPNB5fWdSA6yzxYwUcExgV7BRJqdaB5n+fJu8dFwNMI
xz35Wgd4V+LshY6IwIuB17SwAh3IsGkhsVqIQGgQct8qUQeec1hNj+4SAR7L
C1KWTjrQ52fr9OCHMJhfUdH2ZNABGZlzeyUHhGH5+m/Z24vacKL11p6UTmFY
i8iZ+TGlDb+VugWjaoUhOO0w6ccXbWAbONzqliMMT5WO9B54qg1EUxd9+SPC
UJMXKqVyTBtiJDxl7ncKwdy+RKnnPVqQ6PXL8UmLEHjlyKUYftKClMqAWyV1
QjBz1VBw5L0W3HcJ4/rwSgiiDxF2mVZowdvclIX5FCHQCO7ruJ+lBb9VqppM
7ISAMIGf8/HQAgddQd/JL4JQeo/UKcSgBbuOvKsmdAsAryOv/gX6HgiX0itO
ahMAHegISqbtga6Bivuz9QJg6U80eq69B6KcyyKfvBIAkYxK8iZ+D3xzeWWi
fEMA6mdHU3pF9kCq66P3O/cLgC/hy4ewKU1gOZn6aXstP0jFywgo3tSEb34+
wzNFfFDtdSEh+pcG1MwlUi7Y74C/oVKCCf1U6CRfvvaYvgPS3zVJ3emhwti5
c2ODGjvg4clHBkWdVOBc/S/NRGQHcBwe7+tpocIBpl3r/D3bIT+QHmRaSYUh
/trap4e3g3WlUVJ8FhXWycvW3514QHz7mFylKxW2n596LLyfB/2cePKDgAsV
ZEoHWPbq8YBdg1en139UMNKtK3kuxQMHDZeFFW2pEGecLH5pcBvI/d3R+tqE
CqJ2KiOiR7dBJu/zrv27qEA97+Jr6cYNiu4Utit/KDCRaqKhYs0NS84qjlOz
FMh4o7LGbsAN0ydO21hPU2Dz73JUtTQ3AN7ymNooBZouXk+jfOWCL55/VPi6
KOAUUV0lfpALfp+cuJ1RToHt9x9GLSNcsFTJzoy8oUB1zTXzTjwX2kecE+Mv
KaDI4thxbRsXaM2edjV9SoHfV/6MMTRxwkOrnWxINgWiEuS3j+tzwunpdrxc
DAU0nnJ21Kpxgt+zJTGRKApMtv66nS3JCYQ/oU18ERSw3PFW1nGVA2R/V/eI
XqSA6A1bautrDog9GdJx9gwFHt+OdnqpygHXOD0L3A5TwLn0tOx1CQ5oKeRf
qbGnAG/vwTEvLg6gq2bL7LalQIC49FnFCXbwv/znPq8VBfTvlkSm57LDSU7u
G0YmaLyVd8zO32CHQwmMRWOGFMgdvMxjE8EO67GryjdpFOCQsbq9zQW9/tN9
eU5dCpTTqE6T+9nhTXJQRqkWBbyPScg26LLDXK/aE6ImBT7fH38UJo7e32D9
MpJIAXbu2xwRXOygbHWNloqngK4//cTlVTa4U3NDPlSFAnlGebLRX9nAM3/l
VQuOAl8f24ZdaWaDY81si5qyaP0FWQZiytlAkZnyKESKAhdGXdPiMtig7dwp
QpoQBZ5a8C/Fx7HBjLHBX18+Coy8qra5FswGOt/npFV4KLAvWmbHdUc2+M+f
WmbAQgFpxcHoW+JsMKbi0qAyRwabxGvfU7nYAH+Xi0F1hgyxS7oGaauskLLn
zbzIOBnmGjLXM76yQpF036/SfjLUeRz2z85gBUbW+S/0RjJ4FnYefSzOCnGc
d248zyDDPb6od0+4WOHSp4Py3LfI0BlElixaZYFTHmP97klk0Nt7o/v5VxbQ
nGi1EIsiA++0lWVJBgvYHVkuveNNhhLVDzrV4ixwpv19XIEBGaZTgtNruFgg
o0GXyVKXDDIbu5ZrV5nBdiADv6FBhqutscUNX5lhc/+Li8GqZHDyoe9qyWCG
9tp7S+siZGB+Xi3cLY6OW8n5Bs2RoGfJ7VsEJzMo2b1IipshQZEe2yPVv0wQ
HznlVzROAocPe/Uuf2GCvVMRzoRBdHysw03tOhPgcMGsu1tI4Cg19jySlQnO
JeH9Tz4hAcE9Nhi/wAh2yQdGvxWQgPXxbuPeEUYYHHKosMkjwfM9Z9Bv44yg
+b6+kz0LHbf9u9EbzAgqlu4eLxLR8TiufYTfDBAjYFxm4U2CK5+eCPYNMsB/
3QXMP06S4D9Rq8HoVgbQr/2m6+tOArb8m759jxggr4a58cR/JHCqlky7cpwB
Xg/f0v1oRoLtv480l73+V6Uh+ZCpX5YEFc35m/zxG1XpjdeXR9uIsNvC+ADX
qY0qSv3Hjvz3REhrHc5hNN2oir+9ceZ4HREC2iVNfjNtVEXN2t7rLSMCvutG
fGvwepUwg2fq/QdE9Py7JBrruVYlXgwD2O/cV/7akzbMV6ocC86rFckT4YAi
+4lxjsUqoQVC7KY3ASSvCLvzkqaqQne6eLVK4eESrA5cXP5UNeW5nveJoAIa
PAfnZw+1ICrSxTZfcpXB+io9c92mFblcuyTul6EMZ1h1jbgOtCF7CyNMBZOV
ofPSzff8uHZk3iT/quclZdgeeEkML/kZuR9A9z12WBnCPWzL3Ld1IWzy5/6F
8iqDuxnDyqeZAeTJLYe025FK4Me21tLjOYh4fD+px3xRCcLrFrOHJgaR77Ul
Guf9lOAubdrs5+gQUlmuZ+N3TAlOS562iJr9hqjfTfKrQ5TggaD9nXtjI0gy
17eorxuKIMKqqtvVNYbkU0/54MIV4c7kkSWyxDhiPEvo+RmoCDJtSc+TXcaR
g1pan6vPKMLu2/O4/RPjiBf+SOdVF0XQ3VXBU7cygdTbLvjfQRTh6P69Qy8k
p5EkxdC0T4yKMEoMSd9xbBpxugsy+1YV4JRwkY133jTCa1S9t/2PAvgN8TUp
42eQ+NXM+Y3vChDl2/v8HvITaf6kcXOiQQEKbp28fM31FyLt23J3PlEBVIMz
dKfzfyF9+TeSVWIV4IVzy5LZ9C/E1dWL/WyEAgwIpFGZtH8jdf1R/6QDFGCs
f62wsuY3wmT4TU7MUQH++tTeoHTOIbcmiRPxygogddPaXW55HtGuu3k3+CMO
HJd6dnCILCAPRN/2v27GQdphl4qfGgsIwqfFsVGPA0EZL/6y8wtI51tr92dv
ccD1NBqslhYQtUOGBvmPcPC3oVQydHERGbDWCJ6MxYHGbqTJVWgJiVFa7J+I
woH/tXp/M+oS8vKevetCOA5mbT43C5xbQq71TKyoB+Hgx7fpC48WlhC/iuUc
bU8cfF6V/tI9v4yYkS9bplnigNc5L7xS4C+iUiH7zmEfDvZXq6jmkv8iOscJ
GzgzHDTF7In08f+LfFgMwA8b4KBK0JrIOv8XSc5JC5mi4mA9sKd/in8FCWML
DuMm40C7zzm2nbSCJBz0/7uHgIOSnNNDmX4riL5+pH/pbhw8wUdfI/1ZQViF
BjJ1ZHAwlcytJcq/itQ/sTQslcKB8mLy6AZxFaGla5jRJHCQW5Gl8953FSF7
u/32E8ZBhlnppMvcKpIbKKjmyoODnsf6t0z41pCCu7n8e7hxILSjnqZCXENS
Hv3SFOXEwfUvn24vnV1Dqp+atC6z4CDGddrk2u815H1LDnHPhjwcPXzljrLg
OtLhEp6ttiYPew7IztdqriNvu6gX8CvyMKF3KHv10joS7ZXdY70oD2Zitase
PBuIS80/Y9VZeZDhdT7ITNxAXguV7Lg8Iw9/2VYeZtluIDE2od6jU/JQuIC3
+5K5gZCZV663jssDV3vGM8Pdm0j3ZDnr7hF5GGmgsg3u30S8ZvSo/d/kobyy
3SnIdxMZLTS/kTYkD56P2biel24iEw9F3fED8mB4P+fovv5N5L9qZUH2fnkQ
T9d9M/ZvE3Fb7fKY+CoPH674uUuZ/kPCdHmotT3y8CCUp6LU8x/Cxu18+m23
PIQEFPDZJv5DhG6HBrzrkgdV18F3cV/+IcR91if6O+WhQTpv2zqRgfaZJyw6
+JM8kDL+vHlvxECz2Kdp8rpdHrKEaG637RhoOw9waC1/lIfz2/rKSEEMtLfG
aptJbWg+McrHGeIZaGJiPmNjrfJgyXyet+0OA603sjbXGLXiKq/HKWCgJXco
NQi0yMONc878mp8ZaHU73UqiPsjD5u/HlSyjDLRyXHHyWrM8dI3TBbPZGWl6
dPmFlfdo/m4pVd5ijLQxx8apcNRFg8OeOiqMtG3FNrt5UMd8CanusmSk7Vus
c6E2ycPCgWavB0cZaRe/UhfaG9H1bhER9fNjpAmP/NbzRb2nttiHJ5WRtvr6
JEdVA1ovfQbxvoeMNKtPptxeqHnL99cXlDHSWvsZ3kuinng+IWE8wEhTmHWI
v1ovD7aqGo18vxhpFTc1vUxQw8NIvyEGJlr6y7J6FtRpWdLvg3FMNKEqD4tr
dfLAIu4VYKbBRPvt5G9qj/rsrbKdwmZMtBLOJzpyqPt52T98P8xE0xH/yjhX
i/Zbgu35F6eZaEH03WdrUP8PvAxGSQ==
"]]}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{-24.29227216248964, -47.860169812047964`},
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Exp[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Exp[
Part[#, 2]]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-24.29227216248964,
3.569006325543228}, {-47.860169812047964`, -8.073874868333647}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->FrontEndValueCache[{
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledTicks[{Log, Exp}]}, {{{-20.72326583694641,
FormBox[
TemplateBox[{"10",
RowBox[{"-", "9"}]}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-16.11809565095832,
FormBox[
TemplateBox[{"10",
RowBox[{"-", "7"}]}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-11.512925464970229`,
FormBox[
TemplateBox[{"10",
RowBox[{"-", "5"}]}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-6.907755278982137,
FormBox["0.001`", TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-2.3025850929940455`,
FormBox[
TagBox[
InterpretationBox["\"0.100\"", 0.1, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 3.}]& ], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {2.302585092994046,
FormBox["10", TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-25.328436022934504`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-23.025850929940457`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-18.420680743952367`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-13.815510557964274`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-9.210340371976182,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-4.605170185988091,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {0.,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {4.605170185988092,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {6.907755278982137,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}}, {{-48.35428695287496,
FormBox[
TemplateBox[{"10",
RowBox[{"-", "21"}]}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-39.14394658089878,
FormBox[
TemplateBox[{"10",
RowBox[{"-", "17"}]}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-29.933606208922594`,
FormBox[
TemplateBox[{"10",
RowBox[{"-", "13"}]}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-20.72326583694641,
FormBox[
TemplateBox[{"10",
RowBox[{"-", "9"}]}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-11.512925464970229`,
FormBox[
TemplateBox[{"10",
RowBox[{"-", "5"}]}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-43.74911676688687,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-34.538776394910684`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-25.328436022934504`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-16.11809565095832,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-6.907755278982137,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}}}]]], "Output",
CellChangeTimes->{
3.843729211904028*^9, {3.8437292538647385`*^9, 3.84372927313524*^9}, {
3.8437293057420797`*^9, 3.843729358247096*^9}, 3.8437294550196524`*^9,
3.843729522643529*^9, {3.843729559003095*^9, 3.843729564809157*^9}, {
3.8437296024137526`*^9, 3.8437296121572123`*^9}, {3.843729959094123*^9,
3.8437299705605707`*^9}, {3.843738910538789*^9, 3.8437389207697544`*^9}, {
3.8437389682485847`*^9, 3.8437389881187983`*^9}, 3.843739019114195*^9, {
3.843739096578519*^9, 3.843739198888502*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"m", "=", "125"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"g", "=", "100"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"T", "=",
RowBox[{"10", "^",
RowBox[{"-", "13"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"M", "=",
RowBox[{"2.44", " ",
RowBox[{"10", "^", "18"}]}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"p", "=", "3.14"}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"solution1", "=",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "x", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"45", "*", "M", "*", "T"}], ")"}], "/",
RowBox[{"(",
RowBox[{"1.66", "*", " ", "4", "*",
SuperscriptBox["p", "4"], "*",
SuperscriptBox["m", "2"], "*",
SuperscriptBox["g",
RowBox[{"3", "/", "2"}]]}], ")"}]}], ")"}], "*",
RowBox[{"BesselK", "[",
RowBox[{"1", ",", "x"}], "]"}], "*",
SuperscriptBox["x", "3"]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"y", "[", "1", "]"}], "\[Equal]",
RowBox[{"10", "^",
RowBox[{"-", "20"}]}]}]}], "}"}], ",", "\[IndentingNewLine]", "y",
",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",", "10"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]"}], "\n",
RowBox[{
RowBox[{
RowBox[{"LogLogPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"y", "[", "x", "]"}], "/.", "solution1"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",", "10"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "100"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"10", "^", "11"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]", " ",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"x", ",", "Medium", ",", "Black"}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{"y", ",", "Medium", ",", "Black"}], "]"}]}], "}"}]}]}],
"]"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{"Show", "[", "%", "]"}]}], "Input",
CellChangeTimes->{{3.8437392350180883`*^9, 3.8437394144587765`*^9}, {
3.8437394475591636`*^9, 3.843739456277871*^9}, {3.8437395589395866`*^9,
3.8437396076776447`*^9}, {3.8437396492483654`*^9, 3.8437397494075212`*^9}, {
3.8437398077673016`*^9, 3.8437398081877737`*^9}}],
Cell[BoxData[
GraphicsBox[{{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV0Xk4lU8bwPHnebJkaZEea8pZVUeon0JhpoVEkoos2RJKiyghosgarShC
UjoiO9lKk5QiokhIJSpCkUjonHfeP+aa6/PPfc13bsZerx1uFEEQFfj8//aC
Gv+sfOMBS/sLaeDNRW++tA2Ksq+CILMKrrkWFx1VmSK53VeBv6wun6HKRXOt
FisYJ14DU/2s6CPzuci01n1TxOxksL7jq7L1Lw6qyfiTIjacAlY8T2qqrOQg
507lYu6dVND3Ra0zJ5eDBDLwhbFTGni2LLL7ezoHrT0TNR7RcgM83TjXcVMU
B3XkS/Nn2d8E/u4jhnPsOCirYXHRlbKbgNBpn5K14CC/b1oPWQszgF9ghKnl
Jg6il1i92diYAZorNZd4aHKQ5flUYRi4DVjPvp6qF+egF4c0bETYfNDDJ98v
RGwUf1HhskMUH3z9vGOpeBkbOZdQL+8P8UGMhmmjSh4bTUy/BQdKs0C0FM+3
OIWNmOdC1JqMs8FWYfjZvYFsFHS3eeLqgVzAKI9JEzdko82NlVqjjbmAuPZG
/eUaNlowetvTdFUeePzJ2pOvyUZ3dQM+zEzlAcddp9JvMNhosHd+r5ZxASit
n+6PFGMjhWMV9QnthaCFOlrV9IaFBGfzPGokisBk0NOsmkYW6k28JfJzXRE4
9zFx7rM6FsqrjDM0SS8Cdgm9v/5WsZARtbdoan8xCBt3DZiTyUI+lySTnaZK
wPhKdn1mAAs15NsfWKZSDjxUW+dL81jocnxgG7W1HOgtG7JCXBayC7i+/v3J
clDKVRYPYrLQ9w1dihfelYMxo3p9CSUWmv3Wrv73lQpg5idO+kuw0KYZWx6S
rAIVEdl5lwaYqNrEZth68iG4Ynr9MSOPiSJW+NtqqVWDlQ2jc65mM5H5gmtP
JayrgQljnoYMn4ned7WnPiiuBnuzpPJk05lo+sjubUyvRyB55qHS9stMlGKa
0z7hg0Cr2tqeZD8m6jiarVsz8Bisi9xKc4yY6MMuUfMKogbcVmoJ5W1gos+6
zi4F8jUg+AfQXA2Y6DshF5NmVAOSEt+xdugx0dTFM10nb9YAqd2J1wtXMNGi
Qpvg/2yfgNWqLzcQ8kzkOCpWe/t5LRgLVS/MHWSgz96uFpH8OvC1WypaJoWB
vuw+nn8U1YF3Lce9wpIYqN8gfJ5dRx048udR9J9EBvopwX+lLvUcVPxu2Pz1
EgPN3Pxu8frIc/D99bHD3ZEMRL/23q6y5gW4NrU/S+M4A5msOm1ZXFsP3Hxk
MtZvY6C8Xyk7P/Y0ApE3ByOPijPQB49raf3vWgDbpex+0CVVZJzIlOQJW4FJ
6a3Z/zFUUcWkJKiQewf0vUOIWaeWoK3R6e4L/3aCW/DJkyeti9Fj2wmRCsUP
4OPhk10r1Bej5fdmTBNCP4HYdvmeK0kq6KTRismxkR4wZ7z3gvcCFVQleOjs
F9wLVkbcuagRtQhJW2RucBntA2//tUHVuYvQtkdDH73CvgLF/n/Pbl1URglb
el3Yc/uBaITZ48fKymjIU8sBBA+AMR3zir/FSkj7XrdsyJxBUHBI+VqtiRKK
PduzkRM6BCYHg4eDBhRRW5CR5gj9A+QbhBQbRCoi1gUboXPGT9ChffxbDk8R
rV/kwl4UMwKAy7BBSKcC6ieecZN3jIK75q+EopEKSH7lW7eGOb9AdnhRr7GB
Atryw+CqxdNfwMxlpVHXpDw6VmXFdY8dA2Nn/l4YKJJHnFaFX5rGv0F+8TLb
dF951DxzTjl23jgYOJ08Eawjj04VWeusaxsH/1mqm7wUyKGi4pcXUuMmgE6T
0dmSRjn0qfaX0WWrPyC8H9RGp8ihREat7tr5k2B3ZtcJdx85ZCE1rLK6bhLw
9kcbxWyVQ4ToM+eauL9gXag5W09NDumZmn6iNk+BjNtLo9vE5ZDnjeCHbfOm
wQj/Yc3+ARqxoGO7fcM0aO/LvaffTKOPhxN6tcNmQPV+OwXvShrF5wSZp5v+
A3aaKrvaM2nUoj3vd7WIAAx2LjfZnECjNUC1/Iu4ACiaz+0WwU7esjJIWkoA
cpddTKuJp9E+x50idjICcEp7Fd8QezLy6sJxFQHwfwAbda/QaHHXktU8HQFo
fdvkuPoSjQ6d0Tpx9YAAsGJucyziaCTWZDnp1SQAVX1p3mQEjW6sUZ8d1SIA
+5zK8urDaaR7Q0whvVUAHpm8WhCP7Xm0Sqe5UwD+lT+xUMNuXMDx0/omAMzP
3OsWZ3HP7snxEaEAqDS3ePJDacTsSRvzXikEs7I3njkWQiPD34M/jsULwfvR
wu6AABqJSlY0WF8VgiTtpQcssF8uicjSSxYCatHEAg62nZnqXuENIYhyP/S4
2Z9GJzJ2tcXkCMFPp6ioZdh52x9W3awRgvA039JPJ3Bv7vmoVyNCMHg3bo3b
cRoJixQuJXAJaHyuiqj1ohGVtpbNXUrAudOpz1OxxaL3lN1fRsCNhFmBH7a0
U3p3uzoB1e1KP/CwlaSWLlf6j4CnpZJKE47gfbjqPEkDBPSfSNf3Okyjw7LW
43wbAlZ362zVO0ijrmNXbCtjCDgZEzab64HfW6qxUyuWgC1WCtsksOf/ebH1
ThwBO4PqcobcaWR0koCXLxLQPmhNfjF2/unDXM9EAhb2pbZuwA6L2zymmEHA
AC/ZWDc3GvH407EBFQR0mXhk+8CVRoGdrki3n4CtZmmN95xppNXQ68QfIKD1
FR21ROy+KlchPUjAtuG2+BDsbamuhmPDBFSO/p6zA1vV2fVB7hgB9SYG6/46
0aj2y95yppCAWq3t2WbY0qMuBdJyJPwrmVD3z4FGqKfHIlCehHtEJKIHsH1f
u/wcUCDh6XAxhzbsD8UuGnXKJPQb8dHPxS444XLvDIOET/M/tjtg75pxzppQ
J+HebGO/mj00ShF3Tv+0kYRRlR/FkuxpdNTm+r4jRiS0v+MXFI5tdPft0hlj
EvaIc8R8sH+YmhfKm5Jw865gKzNseH5tzbbtJLz/wuazwA73LqT7HuwhoVnT
i8wD2DxmvVqSLwm9wzoOmdvSiDgmOsT1wz1n7TfrY7c+gQUl/iQsCViuzcMO
civTbQ4kod66wE0S2E1Zt7eIh5Kw+LKf4TMbGvlohhz0PU/C788XxG7ErtTX
zrfkk/CyDo9ntptG3L7+jtosEko/XKltgH3pXKqIbjYJbeqSzTSx93eK2S3O
JaHMLpdMWWw5/w6RwSISurZaz+q2xvOLg+3OVuN5s07Y+WDzlr8QLWsjIe/b
azbfikaJLae0lreTkHz2rycZmwpYZZ/6DveO6dw7j91Zd70grIuE835UepzA
jnI7Yr+9h4TDmSonjbH70mULB4ZI+MEBiA7swv8v77hnkQgFbxpmBOhgK62t
KawUpSDvpfw5HnbSHq64rTgFpWcF5SzBTrz5ozBBkoIbmrsUZmNf4IWIz5Oh
YMxI2O2OnTQKBelF5GIKilpGHgvB9vD4PPubDgWdmTtj23bQ6Gu0sWO4HgVl
8kOdG7D33csuZq2joGtGy/rH2M6jPo7OhhSceRLHy8W2C5xV0rGJgp9aK5LC
sbdeYDu9tKSgwxWP17rY9YVRJZ47Kaia3nVUE3tL65CEhBUFd4ruU+ZiGyuW
lhjZUFAj82C8LDa4ZST5yJGCK5a7LfxpSaPqp3edHJwpGJtyTuYrtn7/nNJp
FwpedtBR6sbWXfHWSdeNglJWbeYN2Pct1pa+dafgx7gM/xrs1T5pkr77KTig
mJNXgV0STznLelIwWuf9zwLsVWXupYUHKagrydLPwv4f7BBfog==
"]]}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
StyleBox["x", Medium,
GrayLevel[0], StripOnInput -> False], TraditionalForm],
FormBox[
StyleBox["y", Medium,
GrayLevel[0], StripOnInput -> False], TraditionalForm]},
AxesOrigin->{-0.11413030975433397`, -11.221168574551546`},
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Exp[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Exp[
Part[#, 2]]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-0.11413030975433397`,
2.4167153557568475`}, {-11.221168574551546`, -5.035172065409805}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->FrontEndValueCache[{
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledTicks[{Log, Exp}]}, {{{0.,
FormBox["1", TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {0.6931471805599453,
FormBox["2", TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {1.6094379124341003`,
FormBox["5", TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {2.302585092994046,
FormBox["10", TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-0.6931471805599453,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-0.5108256237659907,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-0.35667494393873245`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-0.2231435513142097,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-0.10536051565782628`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {0.4054651081081644,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {1.0986122886681098`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {1.3862943611198906`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {1.791759469228055,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {1.9459101490553132`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {2.0794415416798357`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {2.1972245773362196`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {2.70805020110221,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {2.995732273553991,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {3.4011973816621555`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {3.6888794541139363`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {3.912023005428146,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}}, {{-11.512925464970229`,
FormBox[
TemplateBox[{"\[Times]", "\"\[Times]\"", "1.`",
TemplateBox[{"10",
RowBox[{"-", "5"}]}, "Superscript", SyntaxForm ->
SuperscriptBox]}, "RowWithSeparators"], TraditionalForm], {0.01,
0.}, {
AbsoluteThickness[0.1]}}, {-9.903487552536127,
FormBox[
TemplateBox[{"\[Times]", "\"\[Times]\"", "5.`",
TemplateBox[{"10",
RowBox[{"-", "5"}]}, "Superscript", SyntaxForm ->
SuperscriptBox]}, "RowWithSeparators"], TraditionalForm], {0.01,
0.}, {
AbsoluteThickness[0.1]}}, {-9.210340371976182,
FormBox[
TemplateBox[{"\[Times]", "\"\[Times]\"", "1.`",
TemplateBox[{"10",
RowBox[{"-", "4"}]}, "Superscript", SyntaxForm ->
SuperscriptBox]}, "RowWithSeparators"], TraditionalForm], {0.01,
0.}, {
AbsoluteThickness[0.1]}}, {-7.600902459542082,
FormBox[
TemplateBox[{"\[Times]", "\"\[Times]\"", "5.`",
TemplateBox[{"10",
RowBox[{"-", "4"}]}, "Superscript", SyntaxForm ->
SuperscriptBox]}, "RowWithSeparators"], TraditionalForm], {0.01,
0.}, {
AbsoluteThickness[0.1]}}, {-6.907755278982137,
FormBox["0.001`", TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-5.298317366548036,
FormBox[
TagBox[
InterpretationBox["\"0.005\"", 0.005, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 3.}]& ], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-10.819778284410283`,
FormBox[
InterpretationBox[
StyleBox[