diff --git a/scientific_library/tvb/analyzers/ica.py b/scientific_library/tvb/analyzers/ica.py index cfe7949dd4..2a222e8a76 100644 --- a/scientific_library/tvb/analyzers/ica.py +++ b/scientific_library/tvb/analyzers/ica.py @@ -90,12 +90,12 @@ def evaluate(self): # ICA operates on matrices, here we perform for all state variables and modes W = numpy.zeros((n_comp, n_comp, n_svar, n_mode)) # unmixing K = numpy.zeros((n_comp, n_node, n_svar, n_mode)) # whitening matrix - src = numpy.zeros((n_comp, n_time, n_svar, n_mode)) # component time series + src = numpy.zeros((n_time, n_comp, n_svar, n_mode)) # component time series for mode in range(n_mode): for var in range(n_svar): sl = Ellipsis, var, mode - src[sl], W[sl], K[sl] = fastica(data[:, var, :, mode], self.n_components) + K[sl], W[sl], src[sl] = fastica(data[:, var, :, mode], self.n_components) return mode_decompositions.IndependentComponents(source=self.time_series, component_time_series=src, prewhitening_matrix=K, unmixing_matrix=W, n_components=n_comp)