-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathoperations.py
54 lines (36 loc) · 2.26 KB
/
operations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import tensorflow as tf
def Conv(input_, kernel_size, stride, output_channels, padding = 'SAME', mode = None):
with tf.variable_scope("Conv") as scope:
input_channels = input_.get_shape()[-1]
kernel_shape = [kernel_size, kernel_size, input_channels, output_channels]
kernel = tf.get_variable("Filter", shape = kernel_shape, dtype = tf.float32, initializer = tf.keras.initializers.he_normal())
# Patchwise Discriminator (PatchGAN) requires some modifications.
if mode == 'discriminator':
input_ = tf.pad(input_, [[0, 0], [1, 1], [1, 1], [0, 0]], mode="CONSTANT")
return tf.nn.conv2d(input_, kernel, strides = [1, stride, stride, 1], padding = padding)
def TransposeConv(input_, output_channels, kernel_size = 4):
with tf.variable_scope("TransposeConv") as scope:
input_height, input_width, input_channels = [int(d) for d in input_.get_shape()[1:]]
batch_size = tf.shape(input_)[0]
kernel_shape = [kernel_size, kernel_size, output_channels, input_channels]
output_shape = tf.stack([batch_size, input_height*2, input_width*2, output_channels])
kernel = tf.get_variable(name = "filter", shape = kernel_shape, dtype=tf.float32, initializer = tf.keras.initializers.he_normal())
return tf.nn.conv2d_transpose(input_, kernel, output_shape, [1, 2, 2, 1], padding="SAME")
def MaxPool(input_):
with tf.variable_scope("MaxPool"):
return tf.nn.max_pool(input_, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def AvgPool(input_, k = 2):
with tf.variable_scope("AvgPool"):
return tf.nn.avg_pool(input_, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='VALID')
def ReLU(input_):
with tf.variable_scope("ReLU"):
return tf.nn.relu(input_)
def LeakyReLU(input_, leak = 0.2):
with tf.variable_scope("LeakyReLU"):
return tf.maximum(input_, leak * input_)
def BatchNorm(input_, isTrain, name='BN', decay = 0.99):
with tf.variable_scope(name) as scope:
return tf.contrib.layers.batch_norm(input_, is_training = isTrain, decay = decay)
def DropOut(input_, isTrain, rate=0.2, name='drop') :
with tf.variable_scope(name) as scope:
return tf.layers.dropout(inputs=input_, rate=rate, training=isTrain)