-
Notifications
You must be signed in to change notification settings - Fork 60
/
buck50.cxx
4039 lines (3259 loc) · 144 KB
/
buck50.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// buck50: Test and measurement firmware for “Blue Pill” STM32F103 development board
// Copyright (C) 2019,2020 Mark R. Rubin aka "thanks4opensource"
//
// This file is part of buck50.
//
// The buck50 program is free software: you can redistribute it
// and/or modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The buck50 program is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// (LICENSE.txt) along with the buck50 program. If not, see
// <https://www.gnu.org/licenses/gpl.html>
#include <cstdint>
#include <core_cm3.hxx>
#include <stm32f103xb.hxx>
#include <sys_tick_timer.hxx>
#include <usb_dev_cdc_acm.hxx>
#if STM32F103XB_MAJOR_VERSION == 1
#if STM32F103XB_MINOR_VERSION < 3
#warning STM32F103XB_MINOR_VERSION < 3
#endif
#else
#error STM32F103XB_MAJOR_VERSION != 1
#endif
using namespace stm32f103xb ;
using namespace stm32f10_12357_xx;
#if 1 // (section identification for code browsing)
//
// constants
//
#define _JBLEN (10)
typedef uint32_t jmp_buf[_JBLEN];
static const uint32_t IDENTITY = 0xea017af5;
static const uint8_t MAX_BRIDGE_DATA_LEN = 62 ,
MAX_ADC_CHANNEL_NUM = 7 ,
VERSION [] = {0, 9, 2},
CONNECT_SIG_BYTE_0 = 0xf2 ;
// See wait_connect_signature()
// All with high bit set to hopefully avoid ascii control chars
static const unsigned CONNECT_SIGNATURE_LENGTH = 17;
static const uint8_t CONNECT_SIGNATURE[CONNECT_SIGNATURE_LENGTH]
= {CONNECT_SIG_BYTE_0 ,
0x9e, 0xc4, 0xaa, 0xdf,
0xd8, 0xca, 0x8f, 0xbd,
0xbe, 0xa9, 0xfe, 0x83,
0x99, 0xd1, 0xae, 0xeb};
// access USB send buf as uint32_t or uint16_t
static const unsigned RECV_BUF_UINT32S = UsbDevCdcAcm::CDC_OUT_DATA_SIZE >> 2,
SEND_BUF_UINT32S = UsbDevCdcAcm::CDC_IN_DATA_SIZE >> 2,
RECV_BUF_UINT16S = UsbDevCdcAcm::CDC_OUT_DATA_SIZE >> 1,
SEND_BUF_UINT16S = UsbDevCdcAcm::CDC_IN_DATA_SIZE >> 1;
static const unsigned MAX_TRIGGERS = 256;
// Fixed value. For safety against infinite loops (interruptible by user
// input over USB from host anyway). Used only by live() (asm analog sampling
// has no check, can't take time to set timer, etc) so not realtime-critical.
// Max conversion time is 252 12MHz cycles, so in 72MHz main CPU clocks ...
uint32_t ADC_TIMEOUT = 300 * 72 / 12; // 25 microseconds
extern uint32_t STORAGE , // from .ld file
STORAGE_END; // " " "
#endif // #if 1 (constants)
#if 1 // (section identification for code browsing)
//
// types
//
namespace Command { // enum class would require casting to/from uint8_t
static const uint8_t IDENTITY = 1,
VERSION = 2,
RESET = 3,
LIVE = 4,
HALT = 5,
DIGITAL_SAMPLING = 6,
ANALOG_SAMPLING = 7,
SEND_SAMPLES = 8,
PWM = 9,
PARALLEL_BRIDGE = 10,
USART_BRIDGE = 11,
SPI_BRIDGE = 12,
COUNTER = 13,
FLASH_WAIT_PRE = 14,
I2C_BRIDGE = 15,
SERIAL_NUMBER = 16,
BLINK_USER_LED = 17,
CONNECT_SIG = CONNECT_SIG_BYTE_0;
}
// namespaced static const enum classes would require casting to/from uint8_t
//
namespace HaltCode {
static const uint8_t
SETJMP = 0, // setjmp() API
NONE = 0,
MEMORY = 1,
DURATION = 2,
USB = 3;
}
namespace SamplingMode {
static const uint8_t MHZ_6 = 0 ,
IRREGULAR = 1 ,
UNIFORM = 2 ,
MHZ_4 = 3 ,
ANALOG = 0x0f,
UNSET = 0xff;
}
namespace InProgress {
// no good way to access static consts
// or #defines in asm
// manually search for "InProgress::" and
// edit if any change
static const uint16_t IDLE = 0x0000 ,
TRIGGER_MASK = 0x00ff ,
TRIGGERING = 0x0100 ,
EXTERN_TRIG = 0x0200 ,
ANALOG = 0x0400 ,
TRIGGERED = 0x0800 ,
SAMPLING = 0x1000 ,
COUNTING = 0x2000 ,
SAMPLING_ETC = TRIGGER_MASK
| TRIGGERING
| EXTERN_TRIG
| ANALOG
| TRIGGERED
| SAMPLING ,
IN_PROGRESS = TRIGGERING
| ANALOG
| TRIGGERED
| SAMPLING
| COUNTING ;
}
namespace AnalogSlope {
static const uint8_t NEGATIVE = 0,
POSITIVE = 1;
}
// ordered from "best" to "worst"
// USART_n and I2C_n are context dependent, don't conflict with each other
enum class PeriphStatus {
OK = 0 , // 0
EMPTY , // 1
HALTED , // 2
TIMEOUT , // 3
BUSY , // 4
OVERRUN , // 5
ERROR , // 6
USART_BREAK , // 7
USART_NOISE , // 8
USART_PARITY , // 9
USART_FRAMING, // 10
I2C_NOSTART , // 11
I2C_NOADDR , // 12
I2C_NACK , // 13
I2C_NOBTF , // 14
I2C_NORXNE , // 15
I2C_NOSTOP , // 16
};
struct Trigger {
union {
struct {
uint8_t mask,
pass,
fail,
bits;
};
uint32_t word;
};
};
/* Circular buffer. Assume that host will never send message(s) totalling
more than _SIZE (64 byte CDC_OUT_DATA_SIZE) before firmware consumes
them by calling flush(), but don't assume that host CDC-ACM driver always
sends complete message in one USB packet. See fill() which doesn't call
_fill() if client's requested size is already buffered, so _fill()
doesn't call UsbDev::recv_done() to unblock USB flow control (NAKs).
Also assume that host always sends modulo 4 bytes sized packets -- but
check and handle if not, as per when CDC-ACM startup packets.
*/
class UsbRecv {
public:
UsbRecv()
:
_begin(0),
_level(0)
{}
uint8_t byte(unsigned ndx) const;
uint16_t shrt(unsigned ndx) const;
uint32_t word(unsigned ndx) const;
unsigned fill(unsigned need);
void flush(unsigned used); // move inline
protected:
static const uint8_t
_SIZE = UsbDevCdcAcm::CDC_OUT_DATA_SIZE, // must be 64
_MODULO_BYTES_MASK = 0x3f ,
_MODULO_SHRTS_MASK = _MODULO_BYTES_MASK >> 1 ,
_MODULO_WORDS_MASK = _MODULO_BYTES_MASK >> 2 ;
void _fill();
union {
uint8_t _bytes[_SIZE ];
uint16_t _shrts[_SIZE >> 1];
uint32_t _words[_SIZE >> 2];
};
unsigned _begin,
_level;
};
class Sbrk {
public:
Sbrk()
: _brk(reinterpret_cast<uint8_t*>(&STORAGE))
{}
uint8_t* operator()(
const unsigned bytes)
{
uint8_t* current = _brk;
_brk += (bytes + 3) & 0xfffffffc; // keep 32 bit aligned
return current;
}
protected:
uint8_t* _brk;
};
union AdcLive {
struct {
unsigned channel : 4,
samp_hold : 4,
hysteresis : 8,
exponent : 8,
weight : 8;
};
unsigned word;
};
static const uint8_t NIBBLE_COUNTS[16] = {0, 1, 1, 2,
1, 2, 2, 3,
1, 2, 2, 3,
2, 3, 3, 4};
INLINE_DECL uint8_t INLINE_ATTR num_bits_set(
const uint8_t bits)
{
return NIBBLE_COUNTS[bits >> 4] + NIBBLE_COUNTS[bits & 0xf];
}
#endif // #if 1 (types)
#if 1 // (section identification for code browsing)
//
// command message layouts
//
namespace gpioa_command {
static const uint8_t
COMMAND = 0,
GPIO_SPEED = 1, // GPIO output max speed
OPEN_PULL = 2; // (0,1) push-pull/open-drain
}
namespace spi_command {
static const uint8_t
// usb_recv.bytes(NDX)
COMMAND = 0, // Command::SPI_BRIDGE or (0,1) enable/disable
MASTER = 1, // (0,1) slave,master
BITS = 2, // aggregate of ...
// bits positions
XMIT_ONLY = 5, // (0,1) xmit&recv,xmit_only
SELECT = 4, // (0,1) software,hardware
ENDIAN = 3, // (0,1) MSB,LSB first
POLARITY = 2, // (0,1) line at idle
PHASE = 1, // (0,1) clock latch edge
MISO = 0, // (0,1) pushpull/opendrain
// usb_recv.bytes(NDX)
BAUD = 3, // (0-7) clock/pow(2,baud)
PULL = 4, // (0,1,2) floating/up/down
SPEED = 5, // GPIO output max speed
TX_LEN = 6, // data length
NSS = 7, // (0,1,2) floatg/low/active
// usb_recv.word(NDX)
NSS_DLAY = 2, // gpio, PA-4
TX_TMOUT = 3, // Spi::Sr::TXE timeout
RATE = 4, // master send rate
RX_WAIT = 5, // slave wait contiguous MOSI
// usb_recv.bytes(NDX)
CMD_LEN = 24; // command length
} // namespace spi_command
namespace i2c_command {
static const uint8_t
// usb_recv.bytes(NDX)
COMMAND = 0, // Command::I2C_BRIDGE or (0,1) enable/disable
// usb_recv.bytes(NDX)
BITS = 1, // aggregate of ...
// bits positions
MASTER = 3, // (0,1),slave,master
STD_FAST = 2, // (0,1) I2C standard,fast mode
DUTY = 1, // (0,1) 50-50,16/9 duty cycle
GEN_CALL = 0, // (0,1) disable/enable general call address
// usb_recv.bytes(NDX)
GPIO = 2, // (2,1,3) 2,10,50 MHz gpio speed
DEST = 3, // I2C destination address
OAR1 = 4, // own address 1
OAR2 = 5, // " " 2 or >127 for "unused"
DFLT_SIZE = 6, // length of default tx data
RX_SIZE = 7, // number of bytes to receive
// recv_unit16s[NX}
CCR = 5, // ccr field of ccr register
// usb_recv.word(NDX)
TIMEOUT = 3, // master send timeout
// usb_recv.bytes(NDX)
CMD_LEN = 16,
// limits
MAX_TX_DFLT = 16,
MAX_TX_RX = 60;
} // namespace i2c_command
namespace usart_command {
static const uint8_t
// usb_recv.bytes(NDX)
CMD = 0, // placeholder/alignment
BITS_1 = 1, // aggregate of ...
BITS_2 = 2, // aggregate of ...
// bits_1 positions
XMIT = 6, // (0,1) disabled,enabled
RECV = 5, // " " "
CLOCK = 4, // (0,1) async,synchro
LENGTH = 3, // (0,1) 8,9 bits
POLRTY = 2, // (0,1) line at idle
PHASE = 1, // (0,1) 1st,2nd latch edge
LSTCLK = 0, // (0,1) 1st,2nd latch edge
// bits_2 positions
RTS = 2, // (0,1) disabled,enabled
CTS = 1, // (0,1) disabled,enabled
USART = 0, // (0,1) PA0-3 or PA8-10
// usb_recv.bytes(NDX)
PARITY = 3, // (0,2,3) none,even,odd
STOP = 4, // (0-3) 1, 0.5, 2, or 1.5
SPEED = 5, // GPIO output max speed
TX_DFLT = 6, // data to xmit in live() or usart_bridge if synchro
RX_LEN = 7, // max rx data len
// usb_recv.shrt(NDX)
BAUD = 5, // 16 bits
// usb_recv.word(NDX)
TX_TMO = 3, // TX timeout
RX_WAIT = 4, // concat time
RATE = 5, // rate time
// usb_recv.bytes(NDX)
CMD_LEN = 24; // command length
} // namespace usart_command
namespace live_command {
static const uint8_t
// usb_recv.bytes(NDX)
CMD = 0, // placeholder/alignment
GPIO = 1, // (0,1) gpioa disabled/enabled
USART = 2, // (0,1) usart disabled/enabled
SPI = 3, // (0,1) spi disabled/enabled
I2C = 4, // (0,1) i2c disabled/enabled
ADCS = 5, // (0,8) adcs enabled (count)
// usb_recv.word(NDX)
DURATION_LO = 2, // (0-0xffffffff)
DURATION_HI = 3, // (0-0xffffffff)
RATE_LO = 4, // (0-0xffffffff)
RATE_HI = 5, // (0-0xffffffff)
// usb_recv.bytes(NDX)
CMD_LEN = 24; // command length
} // namespace live_command
namespace adc_command {
static const uint8_t
// usb_recv.bytes(NDX)
CHAN_RATE = 0, // (((0-7) channel) << 4) | ((0-15 ) sample rate code)
HYST = 1, // (0-255) hysteresis
EXPN = 2, // (0-255) filter exponent
WGHT = 3, // (0-255) filter weight
CMD_LEN = 4;
} // namespace adc_command
#endif // #if 1 (command message layouts_
#if 1 // (section identification for code browsing)
//
// globals
//
// ordered by size to avoid unnecessary memory-wasting padding
uint8_t send_buf[UsbDevCdcAcm::CDC_IN_DATA_SIZE ] __attribute__
((aligned(4)));
UsbRecv usb_recv;
uint32_t *send_uint32s = reinterpret_cast<uint32_t*>(send_buf);
uint16_t *send_uint16s = reinterpret_cast<uint16_t*>(send_buf);
jmp_buf longjump_buf = {0};
// 128 sufficient size from analysis of assembly output and experimentation
// add 16 (words) for safety
uint32_t STACK[144] __attribute__((section (".stack")));
UsbDevCdcAcm usb_dev;
arm::SysTickTimer sys_tick_timer;
Trigger *triggers = reinterpret_cast<Trigger*>(&STORAGE_END) - MAX_TRIGGERS;
// must be global for asm and send_samples() access
uint32_t sampling_mode = SamplingMode::UNSET;
uint32_t *samples = &STORAGE_END, // init in case SEND_SAMPLES
*samples_end = &STORAGE_END; // before START_SAMPLING
// globals for setting in analog_sampling() and returning in send_samples()
uint32_t analog_sample_rate; // s/h+adc for host to calculate rate
uint16_t num_analog_words ; // two samples/word, either two single channel
// samples, or one from each dual channel
// high byte == InProgress code, low byte == state number where triggered at
uint16_t in_progress = InProgress::IDLE;
// reason why sampling ended, see HaltCode, above
uint8_t halt_code = HaltCode::NONE;
// more globals for setting in analog_sampling() and returning in send_samples()
union {
struct {
unsigned trigger : 4,
second : 4;
};
uint8_t byte ;
} analog_channels;
uint8_t num_analog_channels;
#endif // #if 1 (globals)
#if 1 // (section identification for code browsing)
//
// general utilities
//
INLINE_DECL int INLINE_ATTR memcmp(
const uint8_t *one,
const uint8_t *two,
const unsigned len)
{
for (unsigned ndx = 0 ; ndx < len ; ++ndx)
if (one[ndx] != two[ndx]) return one[ndx] - two[ndx];
return 0;
}
INLINE_DECL uint8_t INLINE_ATTR *memcpy(
uint8_t *dest ,
const uint8_t *source,
const unsigned length)
{
for (unsigned ndx = 0 ; ndx < length ; ++ndx)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
dest[ndx] = source[ndx];
#pragma GCC diagnostic pop
return dest;
}
INLINE_DECL uint8_t INLINE_ATTR UsbRecv::byte(
unsigned ndx) const
{
return _bytes[(_begin + ndx) & _MODULO_BYTES_MASK];
}
INLINE_DECL uint16_t INLINE_ATTR UsbRecv::shrt(
unsigned ndx) const
{
return _shrts[((_begin >> 1) + ndx) & _MODULO_SHRTS_MASK];
}
INLINE_DECL uint32_t INLINE_ATTR UsbRecv::word(
unsigned ndx) const
{
return _words[((_begin >> 2) + ndx) & _MODULO_WORDS_MASK];
}
void UsbRecv::_fill()
{
unsigned rcvd = usb_dev.recv_lnth(UsbDevCdcAcm::CDC_ENDPOINT_OUT);
if (!rcvd)
return;
// Should only be getting non-modulo-4-sized packets from CDC-ACM
// startup, which are ignored, so okay to pad.
// But also pad in case host sends non-mod-4
rcvd = (rcvd + 3) & 0xfffffffc;
if (_level + rcvd > _SIZE)
rcvd = _SIZE - _level;
unsigned end = (_begin + _level) & _MODULO_BYTES_MASK;
_level += rcvd;
unsigned end16 = end >> 1;
// OK if write extra LSB of last uint16_t because just overwriting
// already-used byte, or at worst completely filling with _SIZE
// and stops just short of wraparound
for (unsigned ndx = 0 ; ndx < (rcvd >> 1) ; ++ndx) {
_shrts[end16] = usb_dev.read(UsbDevCdcAcm::CDC_ENDPOINT_OUT, ndx);
end16 = (end16 + 1) & _MODULO_SHRTS_MASK ;
}
usb_dev.recv_done(UsbDevCdcAcm::CDC_ENDPOINT_OUT);
}
unsigned UsbRecv::fill(
unsigned need) // must be <= UsbDevCdcAcm::CDC_OUT_DATA_SIZE
{
if (need == 0 && _level == 0)
_fill(); // poll/check
while (_level < need)
_fill();
return _level;
}
void UsbRecv::flush(
unsigned used)
{
// only flush modulo 4 bytes
used = (used + 3) & 0xfffffffc;
if (used > _level)
used = _level;
_begin = (_begin + used) & _MODULO_BYTES_MASK;
_level -= used ;
}
template <typename ENR, typename RSTR, typename ENR_BITS, typename RSTR_BITS>
inline void __attribute__((always_inline)) rcc_periph_enable_and_reset(
volatile ENR &enr ,
volatile RSTR &rstr ,
const ENR_BITS enr_bits ,
const RSTR_BITS rstr_bits)
{
// "best practices"
//
enr |= enr_bits ; // enable
volatile ENR enr_read(enr); // read ensures peripheral has enabled
rstr |= rstr_bits; // put into reset
rstr -= rstr_bits; // take out of reset
}
inline uint16_t __attribute__((always_inline, optimize(3))) abs(
const int value)
{
return value < 0 ? -value : value;
}
void inline __attribute__((always_inline)) user_led_on()
{
gpioc->bsrr = Gpio::Bsrr::BR13; // set low turn on user LED
}
void inline __attribute__((always_inline)) user_led_off()
{
gpioc->bsrr = Gpio::Bsrr::BS13; // set low turn off user LED
}
INLINE_DECL void INLINE_ATTR usb_send(
uint8_t length)
{
while (!usb_dev.send(UsbDevCdcAcm::CDC_ENDPOINT_IN, send_buf, length))
asm("wfi");
}
void usb_send_w_zlp(
uint8_t length)
{
usb_send(length);
if (length == UsbDevCdcAcm::CDC_OUT_DATA_SIZE)
// send zero length packet to indicate end of data
usb_send(0);
}
void duration_timer(
const uint32_t duration ,
const bool start = true)
{
rcc_periph_enable_and_reset(rcc->apb1enr ,
rcc->apb1rstr ,
Rcc::Apb1enr ::TIM3EN ,
Rcc::Apb1rstr::TIM3RST);
gen_tim_3->psc = 0xffff; // 72MHz/0x10000 = 0.000910222... secs/tick
// generate "update event" to load PSC register into actual
// prescaler counter shadow register
gen_tim_3->egr = GenTim_2_3_4::Egr::UG;
// clear timer, especially UIF so following doesn't generate
// immediate (or slightly delayed) interrupt)
gen_tim_3->sr = 0;
// but ST craziness:
// 1) need to set prescaler
// 2) need to set UG bit in EGR register to actually take effect
// 3) works first time -- doesn't generate pending interrupt
// 4) PSC isn't change by code, and peripheral maintains even in face
// of enabling/disabling in APB1ENR
// 5) second and subsequent times immediately generates
// so need to clear interrupt (doesn't hurt to do first time)
arm::nvic->icpr.set(arm::NvicIrqn::TIM3);
gen_tim_3->arr = duration;
gen_tim_3->dier = GenTim_2_3_4::Dier::UIE;
arm::nvic->iser.set(arm::NvicIrqn::TIM3);
if (start)
gen_tim_3->cr1 = GenTim_2_3_4::Cr1::OPM | GenTim_2_3_4::Cr1::CEN;
}
#endif // #if 1 (general utilities)
#if 1 // (section identification for code browsing)
//
// interrupt handler utilities
//
// noinline because needs to be callable from assembly
extern "C" void __attribute__((noinline)) halt_timers()
{
gen_tim_3->cr1 = 0; // always stop duration timer
gen_tim_3->sr = 0; // clear interrupt flags else keeps interrupting
arm::nvic->icpr.set(arm::NvicIrqn::TIM3); // in case interrupt pending
arm::nvic->icer.set(arm::NvicIrqn::TIM3); // disable interrupt
rcc->apb1enr -= Rcc::Apb1enr::TIM3EN;
adv_tim_1->cr1 = 0; // stop SysTick overflow timer
rcc->apb2enr -= Rcc::Apb2enr::TIM1EN;
}
#endif // #if 1 (interrupt handler utilities)
#if 1 // (section identification for code browsing)
//
// global initialization
//
void usb_mcu_init()
{
#ifdef USB_DEV_FLASH_WAIT_STATES
#if USB_DEV_FLASH_WAIT_STATES == 1
// enable flash prefetch buffer, one wait state
flash->acr |= Flash::Acr::PRFTBE | Flash::Acr::LATENCY_1_WAIT_STATE;
#elif USB_DEV_FLASH_WAIT_STATES == 2
// enable flash prefetch buffer, two wait states
flash->acr |= Flash::Acr::PRFTBE | Flash::Acr::LATENCY_2_WAIT_STATES;
#endif
#endif
rcc->cr |= Rcc::Cr::HSEON;
while(!rcc->cr.any(Rcc::Cr::HSERDY));
rcc->cfgr |= Rcc::Cfgr::HPRE_DIV_1
| Rcc::Cfgr::PPRE2_DIV_1
| Rcc::Cfgr::PPRE1_DIV_2; // apb1 max 36 MHz
// but tim2-5 automatic 2x back
// to 72 MHz
rcc->cfgr.ins( Rcc::Cfgr::PLLSRC // PLL input from HSE (8 MHz)
| Rcc::Cfgr::PLLMULL_9);// Multiply by 9 (8*9=72 MHz)
rcc->cr |= Rcc::Cr::PLLON;
while(!rcc->cr.any(Rcc::Cr::PLLRDY));
rcc->cfgr.ins(Rcc::Cfgr::SW_PLL); // use PLL as system clock
while(!rcc->cfgr.all(Rcc::Cfgr::SWS_PLL)); // wait for confirmation
rcc->cfgr.clr(Rcc::Cfgr::USBPRE); // 1.5x USB prescaler
rcc_periph_enable_and_reset(rcc->apb1enr ,
rcc->apb1rstr ,
Rcc::Apb1enr ::USBEN ,
Rcc::Apb1rstr::USBRST);
// enable ports and alternate functions (leave enabled)
rcc_periph_enable_and_reset(
rcc->apb2enr ,
rcc->apb2rstr ,
Rcc::Apb2enr ::AFIOEN // peripherals
| Rcc::Apb2enr ::IOPAEN // USB,/usart/tim2/spi/adc
| Rcc::Apb2enr ::IOPBEN // sampling/tim1/I2C
| Rcc::Apb2enr ::IOPCEN, // user LED
Rcc::Apb2rstr::AFIORST // peripherals
| Rcc::Apb2rstr::IOPARST // USB/usart/tim2/spi/adc
| Rcc::Apb2rstr::IOPBRST // sampling/tim1/I2C
| Rcc::Apb2rstr::IOPCRST); // user LED
arm::nvic->iser.set(arm::NvicIrqn::USB_LP_CAN1_RX0);
// full main clock speed
sys_tick_timer.init(arm::SysTick::Ctrl::CLK_SRC_CPU);
} // usb_mcu_init()
void gpio_init()
{
afio->mapr = Afio::Mapr::SWJ_CFG_NO_NJTRST; // get NJRST off PB4
// enable USB alternate function on USB+ and USB- data pins
// alternate function output, open-drain (for paranoia), speed 50MHz
gpioa->crh.ins( Gpio::Crh::CNF11_ALTFUNC_OPEN_DRAIN
| Gpio::Crh::CNF12_ALTFUNC_OPEN_DRAIN
| Gpio::Crh::MODE11_OUTPUT_50_MHZ
| Gpio::Crh::MODE12_OUTPUT_50_MHZ );
// all pull down, including PB14 (wait all high until trigger start)
// and PB15 (wait all high to ackknowlege triggered)
// is 0x00000010 by default despite RM0008 claiming 0x00000000
gpiob->odr = 0;
// enable digital input pins as pull/pull-down (latter default in ODR)
gpiob->crl.ins( Gpio::Crl:: CNF0_INPUT_PULL_UP_DOWN
| Gpio::Crl:: CNF1_INPUT_PULL_UP_DOWN
| Gpio::Crl:: CNF2_INPUT_FLOATING // BOOT1 jumpered low
| Gpio::Crl:: CNF3_INPUT_PULL_UP_DOWN
| Gpio::Crl:: CNF4_INPUT_PULL_UP_DOWN
| Gpio::Crl:: CNF5_INPUT_PULL_UP_DOWN
| Gpio::Crl:: CNF6_INPUT_PULL_UP_DOWN
| Gpio::Crl:: CNF7_INPUT_PULL_UP_DOWN
| Gpio::Crl:: MODE0_INPUT
| Gpio::Crl:: MODE1_INPUT
| Gpio::Crl:: MODE2_INPUT
| Gpio::Crl:: MODE3_INPUT
| Gpio::Crl:: MODE4_INPUT
| Gpio::Crl:: MODE5_INPUT
| Gpio::Crl:: MODE6_INPUT
| Gpio::Crl:: MODE7_INPUT );
gpiob->crh.ins( Gpio::Crh:: CNF8_INPUT_PULL_UP_DOWN
| Gpio::Crh:: CNF9_INPUT_PULL_UP_DOWN
| Gpio::Crh:: CNF10_INPUT_PULL_UP_DOWN
| Gpio::Crh:: CNF11_INPUT_PULL_UP_DOWN
| Gpio::Crh:: CNF12_INPUT_PULL_UP_DOWN
| Gpio::Crh:: CNF13_INPUT_PULL_UP_DOWN
| Gpio::Crh:: CNF14_INPUT_PULL_UP_DOWN
| Gpio::Crh:: CNF15_INPUT_PULL_UP_DOWN
| Gpio::Crh:: MODE8_INPUT
| Gpio::Crh:: MODE9_INPUT
| Gpio::Crh::MODE10_INPUT
| Gpio::Crh::MODE11_INPUT
| Gpio::Crh::MODE12_INPUT
| Gpio::Crh::MODE13_INPUT
| Gpio::Crh::MODE14_INPUT
| Gpio::Crh::MODE15_INPUT );
// enable on-board user LED, turned off
gpioc->bsrr = Gpio::Bsrr::BS13;
gpioc->crh.ins( Gpio::Crh::CNF13_OUTPUT_OPEN_DRAIN
| Gpio::Crh::MODE13_OUTPUT_2_MHZ );
}
#endif // #if 1 (global initialization)
#if 1 // (section identification for code browsing)
//
// peripheral setup utilities
//
void spi_activate()
{
namespace spi = spi_command;
const uint8_t spi_bits = usb_recv.byte (spi::BITS ),
baud = usb_recv.byte (spi::BAUD ),
pull = usb_recv.byte (spi::PULL ),
gpio_speed = usb_recv.byte (spi::SPEED ),
nss = usb_recv.byte (spi::NSS );
const bool master = usb_recv.byte (spi::MASTER ),
select = spi_bits & (1 << spi::SELECT ),
endian = spi_bits & (1 << spi::ENDIAN ),
polarity = spi_bits & (1 << spi::POLARITY),
phase = spi_bits & (1 << spi::PHASE ),
miso = spi_bits & (1 << spi::MISO );
const Gpio::Crl::mskd_t speed4 = Gpio::Crl::mskd_t(Gpio::Crl::MASK ,
gpio_speed ,
Gpio::Crl::MODE4_POS ),
speed5 = Gpio::Crl::mskd_t(Gpio::Crl::MASK ,
gpio_speed ,
Gpio::Crl::MODE5_POS ),
speed6 = Gpio::Crl::mskd_t(Gpio::Crl::MASK ,
gpio_speed ,
Gpio::Crl::MODE6_POS ),
speed7 = Gpio::Crl::mskd_t(Gpio::Crl::MASK ,
gpio_speed ,
Gpio::Crl::MODE7_POS );
rcc_periph_enable_and_reset(rcc->apb2enr ,
rcc->apb2rstr ,
Rcc::Apb2enr ::SPI1EN ,
Rcc::Apb2rstr::SPI1RST);
if (master) {
spi1->cr1 = Spi::Cr1::SPE
| Spi::Cr1::MASTER
| Spi::Cr1::SSM
| Spi::Cr1::SSI
| Spi::Cr1::bits_t( endian, Spi::Cr1::LSBFIRST_POS)
| Spi::Cr1::bits_t(polarity, Spi::Cr1:: CPOL_POS )
| Spi::Cr1::bits_t( phase, Spi::Cr1:: CPHA_POS )
| Spi::Cr1::br ( baud & Spi::Cr1:: BR_MASK );
spi1->cr2 = Spi::Cr2::SSOE; // drive NSS pin low to select slave
// connect to I/O pins
//
Gpio::Crl::mskd_t miso_pin,
nss_pin ;
switch (nss) {
case 0:
// floating
nss_pin = Gpio::Crl::MODE4_INPUT
| Gpio::Crl:: CNF4_INPUT_FLOATING;
break;
case 1:
// permanently low
nss_pin = speed4 | Gpio::Crl::CNF4_OUTPUT_PUSH_PULL;
gpioa->bsrr |= Gpio::Bsrr::BR4 ;
break;
case 2:
default:
// SPI sets low when CLOCK+MOSI active
// NO!! Contrary to RM0008 obfuscation, peripheral does not
// control NSS pin on a per-"frame" (8/16 bit xfer) basis
// nss_pin = speed4 | Gpio::Crl:: CNF4_ALTFUNC_PUSH_PULL;
nss_pin = speed4 | Gpio::Crl::CNF4_OUTPUT_PUSH_PULL;
gpioa->bsrr |= Gpio::Bsrr::BS4 /* high */ ;
break;
}
if (pull == 0)
miso_pin = Gpio::Crl:: CNF6_INPUT_FLOATING;
else {
miso_pin = Gpio::Crl:: MODE6_INPUT
| Gpio::Crl:: CNF6_INPUT_PULL_UP_DOWN;
gpioa->bsrr |= pull == 1
? Gpio::Bsrr::BS6 // miso pull up
: Gpio::Bsrr::BR6; // miso pull down, pull==2,
// shouldn't use
}
gpioa->crl.ins( speed5 // spi1 sclk, PA5
| speed7 // spi1 mosi, PA7
| nss_pin // spi1 nss , PA4
| Gpio::Crl:: CNF5_ALTFUNC_PUSH_PULL // spi1 sclk, PA5
| miso_pin // spi1 miso, PA6
| Gpio::Crl:: CNF7_ALTFUNC_PUSH_PULL); // spi1 mosi, PA7
}
else { // slave
Spi::Cr1::bits_t select_bit = select
? Spi::Cr1::bits_t(0) // hardware
: Spi::Cr1::SSM ; // software
spi1->cr1 = Spi::Cr1::SPE
| Spi::Cr1::SLAVE
| select_bit
| Spi::Cr1::bits_t( endian, Spi::Cr1::LSBFIRST_POS)
| Spi::Cr1::bits_t(polarity, Spi::Cr1:: CPOL_POS)
| Spi::Cr1::bits_t( phase, Spi::Cr1:: CPHA_POS)
| Spi::Cr1::br ( baud & Spi::Cr1:: BR_MASK);
spi1->cr2 = 0; // NSS
// connect to I/O pins
//
if (miso) // bit set to 1, open-drain