-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathscripting_demo.py
86 lines (61 loc) · 2.7 KB
/
scripting_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import matplotlib.pyplot as ppl
import numpy as np
from pyboat import WAnalyzer, ssg
ppl.ion()
# --- set basic parameters and initialize the Analyzer---
dt = 2 # the sampling interval, 2s
periods = np.linspace(6, 90, 150) # period range, 6s to 90s
wAn = WAnalyzer(periods, dt, time_unit_label='s')
# --- create a synthetic signal ---
eps = 0.5 # noise intensity
alpha = 0.4 # AR1 parameter, set to 0 for white noise
Nt = 220 # number of samples
# oscillatory signal which sweeps from 30s to 50s
signal1 = ssg.create_noisy_chirp(T1 = 30 / dt, T2 = 50 / dt, Nt = Nt, eps = eps, alpha = alpha)
# add slower oscillatory trend with a period of 70s
signal2 = ssg.create_chirp(T1 = 70 / dt, T2 = 70 / dt, Nt = Nt)
# add exponential decay
syn_env = ssg.create_exp_envelope(tau = 0.65 * Nt, Nt = Nt)
# linear superposition
signal = syn_env * (signal1 + 2. * signal2)
# --- Filtering ---
# calculate the trend with a 60s cutoff
trend = wAn.sinc_smooth(signal, T_c=60)
# detrending here is then just a subtraction
detrended_signal = signal - trend
# normalize the amplitude with a sliding window of 70s
norm_signal = wAn.normalize_amplitude(detrended_signal, window_size=70)
# plot signal and trend, arguments can be any which ppl.plot(...) accepts
wAn.plot_signal(signal, label='Raw signal', color='red', alpha=0.5)
wAn.plot_trend(trend, label='Trend with $T_c$=60s')
# make a new figure to show original signal and detrended + normalized
wAn.plot_signal(signal, num=2, label='Raw signal', color='red', alpha=0.5)
wAn.plot_signal(norm_signal, label='Detrended + normalized', alpha=0.8, marker='.')
# --- Wavelet Transforms ---
# compute and plot the spectrum without detrending
wAn.compute_spectrum(signal)
wAn.ax_spec_signal.set_title('Raw input')
# compute and plot the spectrum of the detrended signal
# the low frequencies are gone!
wAn.compute_spectrum(detrended_signal)
wAn.ax_spec_signal.set_title('Sinc detrended')
# compute and plot the spectrum of the detrended
# and normalized signal, this function also returns
# the Wavelet transformation results directly
modulus, transform = wAn.compute_spectrum(norm_signal)
wAn.ax_spec_signal.set_title('Sinc detrended + ampl. normalized')
# zoom into the spec
# wAn.ax_spec.set_ylim((20,60))
# change x-ticks
wAn.ax_spec.set_xticks([0, 50, 100, 150, 200, 250, 300, 350])
# also vertical grid
wAn.ax_spec.grid(axis='both', color='white', alpha=0.4)
# --- Ridge Evaluation and Readout ---
# get the ridge of the last analysis
wAn.get_maxRidge(power_thresh = 10, smoothing_wsize=20)
wAn.draw_Ridge()
# ppl.savefig('detr_signal_spec.png')
wAn.plot_readout(draw_coi=True)
# ppl.savefig('detr_signal_readout.png')
rd = wAn.ridge_data # this is a pandas DataFrame holding the ridge results
print(rd)