-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathval.py
executable file
·130 lines (119 loc) · 5.56 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from metrics import dice
import torch
import time
from common import *
import SimpleITK as sitk
import glob
#############################
# Read Nii/hdr file using stk
#############################
def read_med_image (file_path, dtype):
img_stk = sitk.ReadImage(file_path)
img_np = sitk.GetArrayFromImage(img_stk)
img_np = img_np.astype(dtype)
return img_np, img_stk
def convert_label(label_img):
label_processed=np.zeros(label_img.shape[0:]).astype(np.uint8)
for i in range(label_img.shape[2]):
label_slice=label_img[:, :, i]
label_slice[label_slice == 10] = 1
label_slice[label_slice == 150] = 2
label_slice[label_slice == 250] = 3
label_processed[:, :, i]=label_slice
return label_processed
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = DenseNet(num_init_features=32, growth_rate=16, block_config=(4, 4, 4, 4),num_classes=4).to(device)
if __name__ == '__main__':
# -----------------------Testing-------------------------------------
# -----------------------Load the checkpoint (weights)---------------
print ('Checkpoint: ', checkpoint)
saved_state_dict = torch.load(checkpoint)
net.load_state_dict(saved_state_dict)
net.eval()
# -----------------------Load testing data----------------------------
test_path='./data_val'
index_file = 0
xstep = 8
ystep = 8 # 16
zstep = 8 # 16
image_flip_dims=[4,3]
label_flip_dims=[3,2]
subject_id = 9
subject_name = 'subject-%d-' % subject_id
f_T1 = os.path.join(test_path, subject_name + 'T1.hdr')
f_T2 = os.path.join(test_path, subject_name + 'T2.hdr')
f_l = os.path.join(test_path, subject_name + 'label.hdr')
inputs_T1, img_T1_itk = read_med_image(f_T1, dtype=np.float32)
inputs_T2, img_T2_itk = read_med_image(f_T2, dtype=np.float32)
label, label_img_itk = read_med_image(f_l, dtype=np.uint8)
label = label.astype(np.uint8)
label = convert_label(label)
mask = inputs_T1 > 0
mask = mask.astype(np.bool)
# ======================normalize to 0 mean and 1 variance====
# Normalization
inputs_T1_norm = (inputs_T1 - inputs_T1[mask].mean()) / inputs_T1[mask].std()
inputs_T2_norm = (inputs_T2 - inputs_T2[mask].mean()) / inputs_T2[mask].std()
inputs_T1_norm = inputs_T1_norm[:, :, :, None]
inputs_T2_norm = inputs_T2_norm[:, :, :, None]
inputs = np.concatenate((inputs_T1_norm, inputs_T2_norm), axis=3)
inputs = inputs[None, :, :, :, :]
image = inputs.transpose(0, 4, 1, 3, 2)
image = torch.from_numpy(image).float().to(device)
_, _, C, H, W = image.shape
deep_slices = np.arange(0, C - crop_size[0] + xstep, xstep)
height_slices = np.arange(0, H - crop_size[1] + ystep, ystep)
width_slices = np.arange(0, W - crop_size[2] + zstep, zstep)
whole_pred = np.zeros((1,)+(num_classes,) + image.shape[2:])
count_used = np.zeros((image.shape[2], image.shape[3], image.shape[4])) + 1e-5
# no update parameter gradients during testing
with torch.no_grad():
for i in range(len(deep_slices)):
for j in range(len(height_slices)):
for k in range(len(width_slices)):
deep = deep_slices[i]
height = height_slices[j]
width = width_slices[k]
image_crop = image[:, :, deep : deep + crop_size[0],
height : height + crop_size[1],
width : width + crop_size[2]]
outputs = net(image_crop)
whole_pred[slice(None), slice(None), deep: deep + crop_size[0],
height: height + crop_size[1],
width: width + crop_size[2]] += outputs.data.cpu().numpy()
count_used[deep: deep + crop_size[0],
height: height + crop_size[1],
width: width + crop_size[2]] += 1
#----------------Major voting-------------------------------
# _, temp_predict = torch.max(outputs.data, 1)
# for labelInd in range(num_classes): # note, start from 0
# currLabelMat = np.where(temp_predict == labelInd, 1, 0) # true, vote for 1, otherwise 0
# whole_pred[slice(None), labelInd, deep: deep + crop_size[0],
# height: height + crop_size[1],
# width: width + crop_size[2]] += currLabelMat
# count_used[deep: deep + crop_size[0],
# height: height + crop_size[1],
# width: width + crop_size[2]] += 1
whole_pred = whole_pred / count_used
whole_pred = whole_pred[0, :, :, :, :]
whole_pred = np.argmax(whole_pred, axis=0)
print (whole_pred.shape, label.shape)
label=label.transpose(0,2,1)
print(whole_pred.shape, label.shape)
# #----------Compute dice-----------
dsc = []
print ('-------------------------')
for i in range(1, num_classes):
dsc_i = dice(whole_pred, label, i)
dsc_i=round(dsc_i*100,2)
dsc.append(dsc_i)
#print ('-------------------------')
datetime= time.strftime("%d/%m/%Y")
print('Data | Note | class1| class2|class3| Avg.|')
print('%s | %s | %2.2f | %2.2f | %2.2f | %2.2f |' % ( \
datetime,
note,
dsc[0],
dsc[1],
dsc[2],
np.mean(dsc)))