This repository has been archived by the owner on Jan 20, 2022. It is now read-only.
forked from mozilla/DeepSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
client.js
118 lines (96 loc) · 4.16 KB
/
client.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/env node
const Fs = require('fs');
const Sox = require('sox-stream');
const Ds = require('./index.js');
const argparse = require('argparse');
const MemoryStream = require('memory-stream');
const Wav = require('node-wav');
const Duplex = require('stream').Duplex;
const util = require('util');
// These constants control the beam search decoder
// Beam width used in the CTC decoder when building candidate transcriptions
const BEAM_WIDTH = 500;
// The alpha hyperparameter of the CTC decoder. Language Model weight
const LM_ALPHA = 0.75;
// The beta hyperparameter of the CTC decoder. Word insertion bonus.
const LM_BETA = 1.85;
// These constants are tied to the shape of the graph used (changing them changes
// the geometry of the first layer), so make sure you use the same constants that
// were used during training
// Number of MFCC features to use
const N_FEATURES = 26;
// Size of the context window used for producing timesteps in the input vector
const N_CONTEXT = 9;
var VersionAction = function VersionAction(options) {
options = options || {};
options.nargs = 0;
argparse.Action.call(this, options);
}
util.inherits(VersionAction, argparse.Action);
VersionAction.prototype.call = function(parser) {
Ds.printVersions();
process.exit(0);
}
var parser = new argparse.ArgumentParser({addHelp: true, description: 'Running DeepSpeech inference.'});
parser.addArgument(['--model'], {required: true, help: 'Path to the model (protocol buffer binary file)'});
parser.addArgument(['--alphabet'], {required: true, help: 'Path to the configuration file specifying the alphabet used by the network'});
parser.addArgument(['--lm'], {help: 'Path to the language model binary file', nargs: '?'});
parser.addArgument(['--trie'], {help: 'Path to the language model trie file created with native_client/generate_trie', nargs: '?'});
parser.addArgument(['--audio'], {required: true, help: 'Path to the audio file to run (WAV format)'});
parser.addArgument(['--version'], {action: VersionAction, help: 'Print version and exits'})
var args = parser.parseArgs();
function totalTime(hrtimeValue) {
return (hrtimeValue[0] + hrtimeValue[1] / 1000000000).toPrecision(4);
}
const buffer = Fs.readFileSync(args['audio']);
const result = Wav.decode(buffer);
if (result.sampleRate < 16000) {
console.error('Warning: original sample rate (' + result.sampleRate + ') is lower than 16kHz. Up-sampling might produce erratic speech recognition.');
}
function bufferToStream(buffer) {
var stream = new Duplex();
stream.push(buffer);
stream.push(null);
return stream;
}
var audioStream = new MemoryStream();
bufferToStream(buffer).
pipe(Sox({
global: {
'no-dither': true,
},
output: {
bits: 16,
rate: 16000,
channels: 1,
encoding: 'signed-integer',
endian: 'little',
compression: 0.0,
type: 'raw'
}
})).
pipe(audioStream);
audioStream.on('finish', () => {
audioBuffer = audioStream.toBuffer();
console.error('Loading model from file %s', args['model']);
const model_load_start = process.hrtime();
var model = new Ds.Model(args['model'], N_FEATURES, N_CONTEXT, args['alphabet'], BEAM_WIDTH);
const model_load_end = process.hrtime(model_load_start);
console.error('Loaded model in %ds.', totalTime(model_load_end));
if (args['lm'] && args['trie']) {
console.error('Loading language model from files %s %s', args['lm'], args['trie']);
const lm_load_start = process.hrtime();
model.enableDecoderWithLM(args['alphabet'], args['lm'], args['trie'],
LM_ALPHA, LM_BETA);
const lm_load_end = process.hrtime(lm_load_start);
console.error('Loaded language model in %ds.', totalTime(lm_load_end));
}
const inference_start = process.hrtime();
console.error('Running inference.');
const audioLength = (audioBuffer.length / 2) * ( 1 / 16000);
// We take half of the buffer_size because buffer is a char* while
// LocalDsSTT() expected a short*
console.log(model.stt(audioBuffer.slice(0, audioBuffer.length / 2), 16000));
const inference_stop = process.hrtime(inference_start);
console.error('Inference took %ds for %ds audio file.', totalTime(inference_stop), audioLength.toPrecision(4));
});