-
Notifications
You must be signed in to change notification settings - Fork 0
/
VADER_Heatmap.py
89 lines (80 loc) · 2.76 KB
/
VADER_Heatmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import csv
states = {
'AK': 'Alaska',
'AL': 'Alabama',
'AR': 'Arkansas',
'AS': 'American Samoa',
'AZ': 'Arizona',
'CA': 'California',
'CO': 'Colorado',
'CT': 'Connecticut',
'DC': 'District of Columbia',
'DE': 'Delaware',
'FL': 'Florida',
'GA': 'Georgia',
'GU': 'Guam',
'HI': 'Hawaii',
'IA': 'Iowa',
'ID': 'Idaho',
'IL': 'Illinois',
'IN': 'Indiana',
'KS': 'Kansas',
'KY': 'Kentucky',
'LA': 'Louisiana',
'MA': 'Massachusetts',
'MD': 'Maryland',
'ME': 'Maine',
'MI': 'Michigan',
'MN': 'Minnesota',
'MO': 'Missouri',
'MP': 'Commonwealth of the Northern Mariana Islands',
'MS': 'Mississippi',
'MT': 'Montana',
'NA': 'National',
'NC': 'North Carolina',
'ND': 'North Dakota',
'NE': 'Nebraska',
'NH': 'New Hampshire',
'NJ': 'New Jersey',
'NM': 'New Mexico',
'NV': 'Nevada',
'NY': 'New York',
'OH': 'Ohio',
'OK': 'Oklahoma',
'OR': 'Oregon',
'PA': 'Pennsylvania',
'PR': 'Puerto Rico',
'RI': 'Rhode Island',
'SC': 'South Carolina',
'SD': 'South Dakota',
'TN': 'Tennessee',
'TX': 'Texas',
'UT': 'Utah',
'VA': 'Virginia',
'VI': 'United States Virgin Islands',
'VT': 'Vermont',
'WA': 'Washington',
'WI': 'Wisconsin',
'WV': 'West Virginia',
'WY': 'Wyoming'
}
states_dict = {}
with open("User_Analysis/VADER_Sentiment.csv", "r", newline='') as fp:
reader = csv.reader(fp)
VADER_values = list(reader)
with open("User_Analysis/User_States.csv", "r", newline='') as fp:
reader = csv.reader(fp)
states_list = list(reader)
for state, senti in zip(states_list, VADER_values):
if state[0] in states_dict:
val = states_dict[state[0]]
states_dict[state[0]] = [val[0]+float(senti[0]), val[1]+1]
else:
states_dict[state[0]] = [float(senti[0]), 1]
states_VADER = [['Shape Name', 'Sentiment']]
for key, value in states_dict.items():
states_VADER.append([states[key], (value[0]/value[1])*100]) # Taking average of sentiment (for each state)
with open("User_Analysis/User_State_Sentiments.csv", "w", newline='') as f:
writer = csv.writer(f)
writer.writerows(states_VADER)
print("File successfully saved. . .")