-
Notifications
You must be signed in to change notification settings - Fork 11
/
adaptiveLasso.m
71 lines (58 loc) · 1.63 KB
/
adaptiveLasso.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
function [ W ] = adaptiveLasso( Phi, hc, lambda, mode, gamma )
% Implementation of adaptive lasso method
if nargin<5
gamma = 1;
end
[~,NODES] = size(Phi);
re_phi = real(Phi);
im_phi = imag(Phi);
X = [re_phi -im_phi; im_phi re_phi];
re_y = real(hc);
im_y = imag(hc);
Y = [re_y; im_y];
% first stage method
switch mode
case 1 % OLS regression
hw = Phi\hc; % for 13 bus
% hw = pinv(full(Phi))*hc; %for 34 37 bus
case 2 % LASSO regression
cvx_begin quiet
%cvx_begin
cvx_solver sdpt3
variable B(2*NODES,1)
minimize( square_pos( norm( X * B - Y , 2 ) ) + lambda * norm( B , 1 ) );
cvx_end
hw = B(1:NODES) + 1j * B(NODES+1:2*NODES);
case 3 % Ridge regression
cvx_begin quiet
%cvx_begin
cvx_solver sdpt3
variable B(2*NODES,1)
minimize( square_pos( norm( X * B - Y , 2 ) ) + lambda * norm( B , 2 ) );
cvx_end
hw = B(1:NODES) + 1j * B(NODES+1:2*NODES);
end
selector = ones(2*length(hw),1);
for i = 1:length(hw)
if abs(hw(i))==0
selector(i)=0;
selector(NODES+i)=0;
end
end
re_beta = 1./(power(abs(real(hw)),gamma)+1e-2);
im_beta = 1./(power(abs(imag(hw)),gamma)+1e-2);
beta = [re_beta; im_beta];
% first stage method: lasso
cvx_begin quiet
%cvx_begin
cvx_solver sdpt3
variable W(2*NODES,1)
minimize( square_pos( norm( X * ( selector .* W ) - Y , 2 ) ) + lambda * norm( beta .* W , 1 ) );
cvx_end
for i = 1:length(selector)
if selector(i)==0
W(i)=0;
end
end
W = W(1:NODES) + 1j * W(NODES+1:2*NODES);
end