diff --git a/.github/workflows/black.yml b/.github/workflows/black.yml new file mode 100644 index 0000000..a89e651 --- /dev/null +++ b/.github/workflows/black.yml @@ -0,0 +1,17 @@ +name: Black + +on: + push: + branches: + - main + pull_request: + +jobs: + black: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v3 + - uses: psf/black@stable + with: + options: "--check --verbose --diff" + src: "./ndfilters" diff --git a/README.md b/README.md index 15d520e..3f6eb49 100644 --- a/README.md +++ b/README.md @@ -2,6 +2,7 @@ [![tests](https://github.com/sun-data/ndfilters/actions/workflows/tests.yml/badge.svg)](https://github.com/sun-data/ndfilters/actions/workflows/tests.yml) [![codecov](https://codecov.io/gh/sun-data/ndfilters/graph/badge.svg?token=BFTOVSyFtf)](https://codecov.io/gh/sun-data/ndfilters) +[![Black](https://github.com/sun-data/ndfilters/actions/workflows/black.yml/badge.svg)](https://github.com/sun-data/ndfilters/actions/workflows/black.yml) [![Documentation Status](https://readthedocs.org/projects/ndfilters/badge/?version=latest)](https://ndfilters.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/ndfilters.svg)](https://badge.fury.io/py/ndfilters) diff --git a/ndfilters/_trimmed_mean.py b/ndfilters/_trimmed_mean.py index 0847ed1..45da00a 100644 --- a/ndfilters/_trimmed_mean.py +++ b/ndfilters/_trimmed_mean.py @@ -2,15 +2,15 @@ import numba __all__ = [ - "trimmed_mean_filter" + "trimmed_mean_filter", ] def trimmed_mean_filter( - array: np.ndarray, - kernel_shape: int | tuple[int, ...], - proportion: float = 0.25, - axis: None | int | tuple[int, ...] = None, + array: np.ndarray, + kernel_shape: int | tuple[int, ...], + proportion: float = 0.25, + axis: None | int | tuple[int, ...] = None, ) -> np.ndarray: """ Calculate a multidimensional rolling trimmed mean. @@ -56,15 +56,18 @@ def trimmed_mean_filter( axis = np.core.numeric.normalize_axis_tuple(axis, ndim=array.ndim) if isinstance(kernel_shape, int): - kernel_shape = (kernel_shape, ) * len(axis) + kernel_shape = (kernel_shape,) * len(axis) else: if len(kernel_shape) != len(axis): raise ValueError( - f"`kernel_shape` should have the same number of elements, {len(kernel_shape)}, as `axis`, {len(axis)}" + f"`kernel_shape` should have the same number of elements, " + f"{len(kernel_shape)}, as `axis`, {len(axis)}" ) kernel_shape = tuple(np.array(kernel_shape)[np.argsort(axis)]) - shape_orthogonal = tuple(1 if ax in axis else array.shape[ax] for ax in range(array.ndim)) + shape_orthogonal = tuple( + 1 if ax in axis else array.shape[ax] for ax in range(array.ndim) + ) result = np.zeros_like(array) @@ -76,46 +79,57 @@ def trimmed_mean_filter( index = tuple(index) if len(axis) == 1: - result[index] = _mean_trimmed_1d(array[index], kernel_shape=kernel_shape, proportion=proportion) - + result[index] = _mean_trimmed_1d( + array=array[index], + kernel_shape=kernel_shape, + proportion=proportion, + ) elif len(axis) == 2: - result[index] = _mean_trimmed_2d(array[index], kernel_shape=kernel_shape, proportion=proportion) - + result[index] = _mean_trimmed_2d( + array=array[index], + kernel_shape=kernel_shape, + proportion=proportion, + ) elif len(axis) == 3: - result[index] = _mean_trimmed_3d(array[index], kernel_shape=kernel_shape, proportion=proportion) - + result[index] = _mean_trimmed_3d( + array=array[index], + kernel_shape=kernel_shape, + proportion=proportion, + ) else: - raise ValueError('Too many axis parameters, only 1-3 reduction axes are supported.') + raise ValueError( + "Too many axis parameters, only 1-3 reduction axes are supported." + ) return result @numba.njit(parallel=True) def _mean_trimmed_1d( - array: np.ndarray, - kernel_shape: tuple[int], - proportion: float, + array: np.ndarray, + kernel_shape: tuple[int], + proportion: float, ): result = np.empty_like(array) - array_shape_x, = array.shape + (array_shape_x,) = array.shape - kernel_shape_x, = kernel_shape + (kernel_shape_x,) = kernel_shape kernel_size = kernel_shape_x - for index_array_x in numba.prange(array_shape_x): + for ix in numba.prange(array_shape_x): values = np.empty(kernel_size) - for index_kernel_x in range(kernel_shape_x): - position_kernel_x = index_kernel_x - kernel_shape_x // 2 - index_final_x = index_array_x + position_kernel_x + for kx in range(kernel_shape_x): + px = kx - kernel_shape_x // 2 + jx = ix + px - if index_final_x < 0: - index_final_x = -index_final_x - elif index_final_x >= array_shape_x: - index_final_x = ~(index_final_x % array_shape_x + 1) + if jx < 0: + jx = -jx + elif jx >= array_shape_x: + jx = ~(jx % array_shape_x + 1) - values[index_kernel_x] = array[index_final_x, ] + values[kx] = array[jx,] lowercut = int(proportion * kernel_size) uppercut = kernel_size - lowercut @@ -142,16 +156,16 @@ def _mean_trimmed_1d( sum_values += values[i] num_values += 1 - result[index_array_x, ] = sum_values / num_values + result[ix,] = sum_values / num_values return result @numba.njit(parallel=True) def _mean_trimmed_2d( - array: np.ndarray, - kernel_shape: tuple[int, int], - proportion: float, + array: np.ndarray, + kernel_shape: tuple[int, int], + proportion: float, ): result = np.empty_like(array) @@ -160,31 +174,31 @@ def _mean_trimmed_2d( kernel_shape_x, kernel_shape_y = kernel_shape kernel_size = kernel_shape_x * kernel_shape_y - for index_array_x in numba.prange(array_shape_x): - for index_array_y in numba.prange(array_shape_y): + for ix in numba.prange(array_shape_x): + for iy in numba.prange(array_shape_y): values = np.empty(kernel_size) - for index_kernel_x in range(kernel_shape_x): - for index_kernel_y in range(kernel_shape_y): + for kx in range(kernel_shape_x): + for ky in range(kernel_shape_y): - position_kernel_x = index_kernel_x - kernel_shape_x // 2 - position_kernel_y = index_kernel_y - kernel_shape_y // 2 + px = kx - kernel_shape_x // 2 + py = ky - kernel_shape_y // 2 - index_final_x = index_array_x + position_kernel_x - index_final_y = index_array_y + position_kernel_y + jx = ix + px + jy = iy + py - if index_final_x < 0: - index_final_x = -index_final_x - elif index_final_x >= array_shape_x: - index_final_x = ~(index_final_x % array_shape_x + 1) + if jx < 0: + jx = -jx + elif jx >= array_shape_x: + jx = ~(jx % array_shape_x + 1) - if index_final_y < 0: - index_final_y = -index_final_y - elif index_final_y >= array_shape_y: - index_final_y = ~(index_final_y % array_shape_y + 1) + if jy < 0: + jy = -jy + elif jy >= array_shape_y: + jy = ~(jy % array_shape_y + 1) - index_flat = index_kernel_x * kernel_shape_y + index_kernel_y - values[index_flat] = array[index_final_x, index_final_y] + index_flat = kx * kernel_shape_y + ky + values[index_flat] = array[jx, jy] lowercut = int(proportion * kernel_size) uppercut = kernel_size - lowercut @@ -211,16 +225,16 @@ def _mean_trimmed_2d( sum_values += values[i] num_values += 1 - result[index_array_x, index_array_y] = sum_values / num_values + result[ix, iy] = sum_values / num_values return result @numba.njit(parallel=True) def _mean_trimmed_3d( - array: np.ndarray, - kernel_shape: tuple[int, int, int], - proportion: float, + array: np.ndarray, + kernel_shape: tuple[int, int, int], + proportion: float, ): result = np.empty_like(array) @@ -229,40 +243,42 @@ def _mean_trimmed_3d( kernel_shape_x, kernel_shape_y, kernel_shape_z = kernel_shape kernel_size = kernel_shape_x * kernel_shape_y * kernel_shape_z - for index_array_x in numba.prange(array_shape_x): - for index_array_y in numba.prange(array_shape_y): - for index_array_z in numba.prange(array_shape_z): + for ix in numba.prange(array_shape_x): + for iy in numba.prange(array_shape_y): + for iz in numba.prange(array_shape_z): values = np.empty(kernel_size) - for index_kernel_x in range(kernel_shape_x): - for index_kernel_y in range(kernel_shape_y): - for index_kernel_z in range(kernel_shape_z): + for kx in range(kernel_shape_x): + for ky in range(kernel_shape_y): + for kz in range(kernel_shape_z): + + px = kx - kernel_shape_x // 2 + py = ky - kernel_shape_y // 2 + pz = kz - kernel_shape_z // 2 - position_kernel_x = index_kernel_x - kernel_shape_x // 2 - position_kernel_y = index_kernel_y - kernel_shape_y // 2 - position_kernel_z = index_kernel_z - kernel_shape_z // 2 + jx = ix + px + jy = iy + py + jz = iz + pz - index_final_x = index_array_x + position_kernel_x - index_final_y = index_array_y + position_kernel_y - index_final_z = index_array_z + position_kernel_z + if jx < 0: + jx = -jx + elif jx >= array_shape_x: + jx = ~(jx % array_shape_x + 1) - if index_final_x < 0: - index_final_x = -index_final_x - elif index_final_x >= array_shape_x: - index_final_x = ~(index_final_x % array_shape_x + 1) + if jy < 0: + jy = -jy + elif jy >= array_shape_y: + jy = ~(jy % array_shape_y + 1) - if index_final_y < 0: - index_final_y = -index_final_y - elif index_final_y >= array_shape_y: - index_final_y = ~(index_final_y % array_shape_y + 1) + if jz < 0: + jz = -jz + elif jz >= array_shape_z: + jz = ~(jz % array_shape_z + 1) - if index_final_z < 0: - index_final_z = -index_final_z - elif index_final_z >= array_shape_z: - index_final_z = ~(index_final_z % array_shape_z + 1) + index_flat = kx * kernel_shape_y + ky + index_flat = index_flat * kernel_shape_z + kz - index_flat = (index_kernel_x * kernel_shape_y + index_kernel_y) * kernel_shape_z + index_kernel_z - values[index_flat] = array[index_final_x, index_final_y, index_final_z] + values[index_flat] = array[jx, jy, jz] lowercut = int(proportion * kernel_size) uppercut = kernel_size - lowercut @@ -289,6 +305,6 @@ def _mean_trimmed_3d( sum_values += values[i] num_values += 1 - result[index_array_x, index_array_y, index_array_z] = sum_values / num_values + result[ix, iy, iz] = sum_values / num_values return result diff --git a/ndfilters/tests/test_trimmed_mean.py b/ndfilters/tests/test_trimmed_mean.py index 4fe00e7..fa6f631 100644 --- a/ndfilters/tests/test_trimmed_mean.py +++ b/ndfilters/tests/test_trimmed_mean.py @@ -11,7 +11,7 @@ np.random.random(16), np.random.random((16, 17)), np.random.random((16, 17, 18)), - ] + ], ) @pytest.mark.parametrize( argnames="kernel_shape", @@ -22,26 +22,28 @@ argvalues=[ 0, -1, - (0, ), - (-1, ), + (0,), + (-1,), (0, 1), (-2, -1), (0, 1, 2), (2, 1, 0), - ] + ], ) @pytest.mark.parametrize("proportion", [0.25, 0.45]) def test_trimmed_mean_filter( - array: np.ndarray, - kernel_shape: int | tuple[int, ...], - axis: None | int | tuple[int, ...], - proportion: float, + array: np.ndarray, + kernel_shape: int | tuple[int, ...], + axis: None | int | tuple[int, ...], + proportion: float, ): if axis is None: axis_normalized = tuple(range(array.ndim)) else: try: - axis_normalized = np.core.numeric.normalize_axis_tuple(axis, ndim=array.ndim) + axis_normalized = np.core.numeric.normalize_axis_tuple( + axis, ndim=array.ndim + ) except np.AxisError: with pytest.raises(np.AxisError): ndfilters.trimmed_mean_filter( @@ -52,7 +54,11 @@ def test_trimmed_mean_filter( ) return - kernel_shape_normalized = (kernel_shape,) * len(axis_normalized) if isinstance(kernel_shape, int) else kernel_shape + kernel_shape_normalized = ( + (kernel_shape,) * len(axis_normalized) + if isinstance(kernel_shape, int) + else kernel_shape + ) if len(kernel_shape_normalized) != len(axis_normalized): with pytest.raises(ValueError): @@ -71,7 +77,7 @@ def test_trimmed_mean_filter( axis=axis, ) - kernel_shape_scipy = [1, ] * array.ndim + kernel_shape_scipy = [1] * array.ndim for i, ax in enumerate(axis_normalized): kernel_shape_scipy[ax] = kernel_shape_normalized[i] @@ -84,4 +90,3 @@ def test_trimmed_mean_filter( ) assert np.allclose(result, expected) -