-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_ner.py
90 lines (77 loc) · 3.15 KB
/
train_ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python
# coding: utf8
"""Example of training spaCy's named entity recognizer, starting off with an
existing model or a blank model.
For more details, see the documentation:
* Training: https://spacy.io/usage/training
* NER: https://spacy.io/usage/linguistic-features#named-entities
Compatible with: spaCy v2.0.0+
"""
from __future__ import unicode_literals, print_function
import random
from pathlib import Path
import spacy
from spacy.util import minibatch, compounding
import json
LABELS = ['FIRSTNAME', 'LASTNAME', 'ADDR', 'DATE']
with open("training_data.json") as fd:
TRAIN_DATA = json.load(fd)[:200]
def main(model=None, output_dir=None, n_iter=100):
"""Load the model, set up the pipeline and train the entity recognizer."""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
print("Created blank 'en' model")
# create the built-in pipeline components and add them to the pipeline
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'ner' not in nlp.pipe_names:
ner = nlp.create_pipe('ner')
nlp.add_pipe(ner, last=True)
# otherwise, get it so we can add labels
else:
ner = nlp.get_pipe('ner')
# add labels
for ent in LABELS:
print("Label", ent)
ner.add_label(ent)
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
with nlp.disable_pipes(*other_pipes): # only train NER
optimizer = nlp.begin_training()
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(TRAIN_DATA, size=compounding(4., 32., 1.001))
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(
texts, # batch of texts
annotations, # batch of annotations
drop=0.5, # dropout - make it harder to memorise data
sgd=optimizer, # callable to update weights
losses=losses)
print('Losses', itn, losses)
# test the trained model
for text, _ in TRAIN_DATA[:1]:
doc = nlp(text)
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
# save model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
for text, _ in TRAIN_DATA:
doc = nlp2(text)
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
#print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
if __name__=='__main__':
main(n_iter=100, output_dir="models")