-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtry.py
79 lines (66 loc) · 2.04 KB
/
try.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import pandas as pd
from sklearn.preprocessing import Imputer
import numpy as np
from sklearn import ensemble
from sklearn.ensemble import ExtraTreesRegressor
import re
import random
output=[]
if __name__ == "__main__":
loc_train = "./train.csv"
df_train = pd.read_csv(loc_train)
#test = df_test['ID']
#for i in test:
# print i
#l1 = len(test)
#print "var"
for i in range(62):
output.append([])
first = ['Id']
allcol = ['Ret_121','Ret_122','Ret_123','Ret_124','Ret_125','Ret_126','Ret_127','Ret_128','Ret_129','Ret_130',
'Ret_131','Ret_132','Ret_133','Ret_134','Ret_135','Ret_136','Ret_137','Ret_138','Ret_139','Ret_140','Ret_141',
'Ret_142','Ret_143','Ret_144','Ret_145','Ret_146','Ret_147','Ret_148','Ret_149','Ret_150','Ret_151','Ret_152',
'Ret_153','Ret_154','Ret_155','Ret_156','Ret_157','Ret_158','Ret_159','Ret_160','Ret_161','Ret_162','Ret_163',
'Ret_164','Ret_165','Ret_166','Ret_167','Ret_168','Ret_169','Ret_170','Ret_171','Ret_172','Ret_173','Ret_174',
'Ret_175','Ret_176','Ret_177','Ret_178','Ret_179','Ret_180','Ret_PlusOne','Ret_PlusTwo']
total = []
l=0
train = df_train
#t = replicate(6,apply(train[148:209],FUN=median,MARGIN=2))
tr =[]
out = []
sub = 0
tr_li =[]
for i in allcol:
t = train[i]
tr.append(t)
temp =[]
for j in t:
if j =='':
temp.append(0)
else:
temp.append(j)
#sub = sub/40000
sub =0
tr_li.append(temp)
temp.sort()
#med = random.sample(xrange(40000), 50)
val_list = temp[20000]
#final=[]
#val_sum = sum(val)/40000
out.append(val_list)
#print len(val)
print out[60]
print out[61]
with open('median', "w") as outfile:
outfile.write("Id,Predicted\n")
l=1
k=1
for i in range(120000):
k=1
for j in range(62):
s = str(i+1) + '_'+str(j+1)
if j>=60:
outfile.write("%s,%s\n"%(s, out[j]))
else:
outfile.write("%s,%s\n"%(s, out[j]))