-
Notifications
You must be signed in to change notification settings - Fork 2
/
DoseComparison.py
executable file
·114 lines (91 loc) · 3.58 KB
/
DoseComparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python
'''
DoseComparison
numerical evaluation of dose distributions comparison
:Date: 2017-01-02
:Version: 1.0.0
:Author: ongchi
:Copyright: Copyright (c) 2016, ongchi
:License: BSD 3-Clause License
'''
import numpy as np
def DoseComparison(refimg, tstimg, delta_r=1, delta_d=0.05):
''' gamma evaluation and normalized dose difference of dose image distributions
:param refimg: reference dose image
:param tstimg: test dose image
:param delta_r: spatial criterion (voxels)
:param delta_d: dose criterion (percentage)
:type refimg: numpy.ndarray
:type tstimg: numpy.ndarray
:type delta_r: int
:type delta_d: float
:rtype: numpy.ndarray, numpy.ndarray
'''
# check for valid arguments
if refimg.shape != tstimg.shape:
raise Exception("ValueError: shape mismatch: refimg and tstimg must have the same shape")
if delta_r <= 0 or int(delta_r) != delta_r:
raise Exception("ValueError: delta_r is an integer greater than zero")
if delta_d <= 0 or delta_d >= 1:
raise Exception("ValueError: delta_d is a float number between 0 (exclusive) and 1 (exclusive)")
diff = tstimg - refimg
_ = np.empty(np.array(tstimg.shape) + delta_r * 2)
exTest = np.ma.array(_, mask=np.ones_like(_, dtype=bool))
_ = slice(delta_r, -delta_r)
exTest.data[_, _, _], exTest.mask[_, _, _] = tstimg, False
# distance map
distRange = np.arange(-delta_r, delta_r + 1, 1, dtype=float)
_ = np.array(np.meshgrid(distRange, distRange, distRange))
distMap = np.sqrt(np.sum(_ ** 2, axis=0))
# mask out distance map if center of vexel is in delta_r
distRange[distRange < 0] += 0.5
distRange[distRange > 0] -= 0.5
_ = np.array(np.meshgrid(distRange, distRange, distRange))
distMask = np.sqrt(np.sum(_ ** 2, axis=0)) >= delta_r
# mask distance within delta_r
dist = np.ma.array(distMap, mask=distMask)
dist[dist > delta_r] = delta_r
# gamma
gamma = np.ma.empty_like(diff)
gamma[:] = np.inf
_sqDist = (dist / delta_r) ** 2
# normalized dose difference
madd = np.ma.empty_like(diff)
madd[:] = -np.inf
l_min_dose = np.ma.empty_like(diff)
l_min_dose[:] = np.inf
l_min_dist = np.ma.empty_like(diff)
nx, ny, nz = diff.shape
it = np.nditer(dist, ("multi_index", ))
while not it.finished:
i, j, k = idx = it.multi_index
_volSlice = [slice(i, i + nx), slice(j, j + ny), slice(k, k + nz)]
# skip masked voxels
if distMask[idx] or np.alltrue(exTest[_volSlice].mask):
it.iternext()
continue
# gamma index
_sqDose = ((exTest[_volSlice] - refimg) / refimg / delta_d) ** 2
_gamma = np.sqrt(_sqDist[idx] + _sqDose)
_ = np.bitwise_and(gamma > _gamma, np.bitwise_not(_gamma.mask))
gamma[_] = _gamma[_]
# madd
_ = l_min_dose > exTest[_volSlice]
l_min_dose[_] = exTest[_]
l_min_dist[_] = dist[idx]
it.iternext()
# ndd calculation
sr = np.sqrt(delta_d ** 2 - (delta_d * l_min_dist / delta_r) ** 2)
madd = ( (np.abs(l_min_dose - refimg) / refimg) < sr
) * ( sr - np.abs(l_min_dose - refimg) + delta_d )
madd[madd < delta_d] = delta_d
ndd = diff / madd * delta_d
return gamma, ndd
if __name__ == '__main__':
def wave(x, y, z, v):
return np.cos(v * x) + np.cos(v * y) + np.cos(v * z) \
+ 2 * (x ** 2 + y ** 2 + z ** 2)
X, Y, Z = np.mgrid[-2:2:500j, -2:2:500j, -2:2:5j]
img1 = wave(X, Y, Z, 10)
img2 = wave(X, Y, Z, 12)
gamma, ndd = DoseComparison(img1, img2, delta_r=2, delta_d=0.1)