-
Notifications
You must be signed in to change notification settings - Fork 171
/
Copy pathrun_RingNet.py
95 lines (78 loc) · 3.14 KB
/
run_RingNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""
Author: Soubhik Sanyal
Copyright (c) 2019, Soubhik Sanyal
Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights on this
computer program.
You can only use this computer program if you have closed a license agreement with MPG or you get the right to use
the computer program from someone who is authorized to grant you that right.
Any use of the computer program without a valid license is prohibited and liable to prosecution.
Copyright 2019 Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG). acting on behalf of its
Max Planck Institute for Intelligent Systems and the Max Planck Institute for Biological Cybernetics.
All rights reserved.
More information about RingNet is available at https://ringnet.is.tue.mpg.de.
All rights reserved.
based on github.com/akanazawa/hmr
"""
# RingNet Inference for single image.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
from os.path import exists
class RingNet_inference(object):
def __init__(self, config, sess=None):
self.config = config
self.load_path = config.load_path
if not config.load_path:
raise Exception(
"provide a pretrained model path"
)
if not exists(config.load_path + '.index'):
print('%s couldnt find..' % config.load_path)
import ipdb
ipdb.set_trace()
# Data
self.batch_size = config.batch_size
self.img_size = config.img_size
self.data_format = config.data_format
input_size = (self.batch_size, self.img_size, self.img_size, 3)
self.images_pl = tf.placeholder(tf.float32, shape=input_size, name='input_images')
if sess is None:
self.sess = tf.Session()
else:
self.sess = sess
# Load graph.
self.saver = tf.train.import_meta_graph(self.load_path+'.meta')
self.graph = tf.get_default_graph()
self.prepare()
def prepare(self):
print('Restoring checkpoint %s..' % self.load_path)
self.saver.restore(self.sess, self.load_path)
def predict(self, images, get_parameters=False):
"""
images: batch_size, img_size, img_size, 3 # Here for inference the batch size is always set to 1
Preprocessed to range [-1, 1]
"""
results = self.predict_dict(images)
if get_parameters:
return results['vertices'], results['parameters']
else:
return results['vertices']
def predict_dict(self, images):
"""
Runs the model with images.
"""
images_ip = self.graph.get_tensor_by_name(u'input_images_1:0')
params = self.graph.get_tensor_by_name(u'add_2:0')
verts = self.graph.get_tensor_by_name(u'Flamenetnormal_2/Add_9:0')
feed_dict = {
images_ip: images,
}
fetch_dict = {
'vertices': verts,
'parameters': params,
}
results = self.sess.run(fetch_dict, feed_dict)
tf.reset_default_graph()
return results